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Binomial MLMs in R require the lme4 package. This package is a comprehensive source of multi-level modeling in R and is a fairly complex piece of software. However, running binomial MLMs in it is reasonably straightforward. Also, one of the advantages of R is the range of built-in computing functionality that can supplement any of its packages. Nevertheless, if you aren’t familiar with R and have access to SAS or STATA, you may find it easier to work with them.  This guide assumes a basic familiarity with R, its interface and its data-handling methods. 

The lme4 package requires that the data be provided in “Bernoulli” format, i.e., ungrouped. Fortunately there is another package that will unpack grouped data into the Bernoulli format. This is the aod package, and the relevant function is splitbin. The example presented here is from Table 2 in our paper, Delayed Recall as predicted by neglect score. 
# Load lme4:
library(lme4)

# Load aod:
library (aod)

# Get the data into R:

neglect <- c(1,7,8,3,7,6,4)
r <- c(37,26,20,24,32,23,33)

n <- c(rep(50,7))
# Convert the data into a data frame, name it “delay,” and attach it. 
delay <- data.frame(r,n,neglect)

attach(delay)
# Use the aod package’s splitbin function to unpack the data, 

# and name the new data structure “dat1.”
# Note that you have to use a lm-style formula to tell splitbin 

# which covariates to include. 

dat1 <- splitbin(cbind(r, n-r) ~ neglect, delay)
#

# Here is what dat1 looks like.
# Note that it has automatically generated a subject id:
> dat1

    id r neglect

1    1 0       1

2    1 0       1

3    1 0       1

4    1 0       1

5    1 0       1
…

51   2 0       7

52   2 0       7

53   2 0       7

54   2 0       7

55   2 0       7
…

345  7 1       4

346  7 1       4

347  7 1       4

348  7 1       4

349  7 1       4

350  7 1       4
# 

# Fit the null model, using id for the random intercept:

> gm0 <- glmer(r ~ 1 + (1 |id), family = binomial, data = dat1)

> summary(gm0)

Generalized linear mixed model fit by the Laplace approximation 

Formula: r ~ 1 + (1 | id) 

   Data: dat1 

   AIC   BIC logLik deviance

 479.6 487.3 -237.8    475.6

Random effects:

 Groups Name        Variance Std.Dev.

 id     (Intercept) 0.14604  0.38215 

Number of obs: 350, groups: id, 7

Fixed effects:

            Estimate Std. Error z value Pr(>|z|)

(Intercept)   0.2384     0.1809   1.318    0.188
#

# Now, fit the model including neglect as predictor:

> gm1 <- glmer(r ~ neglect + (1 |id), family = binomial, data = dat1)

> summary(gm1)

Generalized linear mixed model fit by the Laplace approximation 

Formula: r ~ neglect + (1 | id) 

   Data: dat1 

   AIC   BIC logLik deviance

 478.3 489.9 -236.1    472.3

Random effects:

 Groups Name        Variance Std.Dev.

 id     (Intercept) 0.060992 0.24697 

Number of obs: 350, groups: id, 7

Fixed effects:

            Estimate Std. Error z value Pr(>|z|)  

(Intercept)  0.88719    0.35255   2.517   0.0119 *

neglect     -0.12595    0.06183  -2.037   0.0416 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Correlation of Fixed Effects:

        (Intr)

neglect -0.913

Next, we present the Table 4 example. This time, we read the grouped data in from a tab-delimited text-file.
# Load lme4:

library(lme4)

# Load aod:

library (aod)

# Read the data file, name it “tab4,” and attach it:

tab4 <- read.table("table4.txt", header = TRUE)

attach(tab4)
# Use splitbin to unpack the data, name it “newtab4.”

# Be sure to include the clustering variable (ident).

# Otherwise R will assume every new cluster of data corresponds to 

# a different subject.
newtab4 <- splitbin(cbind(score, length-score) ~ cascon+test+castest+ident, tab4)
#

# First, fit a null model:

> gm1 <- glmer(score ~ 1 + (1 |ident), family = binomial, data = newtab4)

> summary(gm1)

Generalized linear mixed model fit by the Laplace approximation 

Formula: score ~ 1 + (1 | ident) 

   Data: newtab4 

  AIC  BIC logLik deviance

 1056 1066 -526.2     1052

Random effects:

 Groups Name        Variance Std.Dev.

 ident  (Intercept) 0.11040  0.33226 

Number of obs: 770, groups: ident, 11

Fixed effects:

            Estimate Std. Error z value Pr(>|z|)

(Intercept)   0.1865     0.1240   1.504    0.132
#
# Now, fit the model including all three predictors:

> gm2 <- glmer(score ~ cascon+test+castest + (1 |ident), family = binomial, data = newtab4)

> summary(gm2)

Generalized linear mixed model fit by the Laplace approximation 

Formula: score ~ cascon + test + castest + (1 | ident) 

   Data: newtab4 

  AIC  BIC logLik deviance

 1016 1039 -503.1     1006

Random effects:

 Groups Name        Variance Std.Dev.

 ident  (Intercept) 0.024456 0.15638 

Number of obs: 770, groups: ident, 11

Fixed effects:

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -0.0080     0.1023  -0.078   0.9377    

cascon       -0.6582     0.3523  -1.868   0.0617 .  

test          1.0863     0.1855   5.855 4.78e-09 ***

castest      -1.5234     0.6251  -2.437   0.0148 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Correlation of Fixed Effects:

        (Intr) cascon test  

cascon  -0.290              

test    -0.422  0.123       

castest  0.125 -0.441 -0.297
#

# Compare the two models:

> anova(gm1,gm2)

Data: newtab4

Models:

gm1: score ~ 1 + (1 | ident)

gm2: score ~ cascon + test + castest + (1 | ident)

    Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)    

gm1  2 1056.3 1065.7 -526.18                             

gm2  5 1016.2 1039.4 -503.08 46.185      3  5.181e-10 ***
SAS and R both use log-likeihood chi-square statistics for evaluating goodness of fit. R compares the models via the likelihood ratio.  The difference between the -2 log likelihood statistics produced by SAS is very similar (2(3) = 150.2 – 104.1 = 46.1). STATA evaluates the comparison between this model and the null model via a Wald chi-square statistic (2(3) = 45.04). However, twice the difference between STATA’s log-likelihood chi-squares for the two models (2(3) = 2*(75.128 – 52.036) = 46.18) is nearly identical to R and SAS. 
