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Workshop on:
Noncentral Confidence Intervals and Power Analysis

Michael Smithson
Psychology, Australian National University

Overview
Definition:
Denote a population statistic by θ, whose value is unknown. We may define
confidence intervals for values of θ given a confidence level of 100(1 – α)%,
where α lies between 0 and 1, and a sample size of N. Confidence intervals may
have an upper limit or a lower limit, or both.
•  An upper confidence limit (U) is a value that, under repeated random

samples of size N, may be expected to exceed θ’s true value 100(1 – α)% of
the time.

•  A lower confidence limit (L) is a value that, under repeated random samples
of size N, may be expected to fall below θ’s true value 100(1 – α)% of the
time. The traditional confidence interval uses lower and upper limits that
contain θ’s true value 100(1 – α)% of the time.

The interval often is written as [L, U], and sometimes writers will express the
interval and its confidence level by writing
Pr(L < θ < U) = 1 – α.

Example 1.
Consider a pollster who collects a random sample of 1000 people from the
voting population. Of the 1000 people, 410 said they would vote for candidate
Aibici. So, the sample proportion voting for Aibici is
P = 410/1000 = 0.41.
The pollster would like to construct a 95% confidence interval for Π, the
population value of the proportion. She uses the normal distribution as a large-
sample approximation to the sampling distribution for the proportion, which has
a mean of Π and a standard deviation sP, with

sP = P(1-P)
N



22-07-01 Noncentral CI and Power Workshop 2

To construct a 100(1 - α)% confidence interval given a sample P, we need to
find the number of standard errors above and below P required to slice α/2 from
the tails of the normal distribution. Denote this number by zα/2.
•  The lower limit of the confidence interval is the mean of a normal

distribution for which zα/2 slices α/2 from the upper tail. That mean is
P – w, where w = (zα/2)(sp).

•  The upper limit of the confidence interval is the mean of a normal
distribution for which -zα/2 slices α/2 from the lower tail. That mean is
P + w, where w = (zα/2)(sp).

•  The resulting confidence interval for Π is [P – w, P + w].

-2 -1 0 1 2 3-3

.38 .395 .41 .425 .44 .455.365

s    unitsP

Π

95% conf. interval

We already have P = 410/1000 = 0.41, so
 
s P  = .41(1-.41) 

1000 
 = 0.01555. 

A 95% confidence level entails α = .05 so α/2 = .025 must be sliced from the
lower and upper tails of the normal distribution. The required number of
standard errors above and below P to do this is zα/2 = 1.96.

The half-width of the confidence interval is therefore
w = (zα/2)(sp) = (1.96)(0.01555) = 0.0305.
•  The lower limit is L = P – w = .41 - .0305 = .38, and
•  the upper limit is U = P + w = .41 + .0305 = .44.
•  The 95% confidence interval for Π is therefore [.38, .44].
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Confidence Intervals as "Inverted" Significance Tests
Then 95% confidence interval in Example 1 contains all the "null hypothesis"
values of Π that we cannot reject, using a two-tailed test and α = .05.
•  We could reject any hypothetical value of Π below .38 because P = .41 cuts

off less than  .025 of its corresponding distribution.
•  Likewise, we could reject any hypothetical value of Π above .44.
•  We could not reject any hypothetical value of Π from .38 to .44.

Example 2.
Suppose we are observing independent trials in an experiment that have only
two possible outcomes, A and ~A. We have observed N = 15 trials and 5 A’s
have occurred, so our observed proportion is P = 5/15.
Now suppose we would like to construct a 90% confidence interval for Π. This
time we will use the binomial distribution as the sampling distribution for P.
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Π  = .5775

Π  = .1417

P = 5/15

Why .1417 and .5775?
•  The heights of the bars in the sampling distribution for Π = .1417 from 5/15 on

up are the probabilities of getting P = 5/15 or higher if Π actually is .1417.
Those probabilities add up to 0.05.

•  The heights of the bars in the sampling distribution for Π = .5775 from 5/15 on
down are the probabilities of getting a sample statistic P = 5/15 or lower if
population parameter Π actually is .8461. Those probabilities also add up to
0.05.
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Central versus Noncentral Distributions
In both Examples 1 and 2 we are really sliding a sampling distribution up and
down the axis by changing the value of Π until we find the appropriate lower
and upper limits for the confidence interval.
However, because the binomial distribution has a unique shape for every value
of Π, we need a computer program (or, in the past, very patient humans) to
iteratively home in on these limits.
•  With central or standardizable distributions, for any specified sample size

and degrees of freedom the same standardized distribution may be used
regardless of the hypothetical value of the population parameter.

•  Noncentral or nonstandardizable distributions change shape depending on
the value of the parameter, so a unique distribution must be computed for
every parameter value under consideration.

Confidence Intervals, Significance Tests, Effect Size, and Power
Now suppose we want to test our sample mean against some hypothetical value,
Πh. The confidence interval above contains all the values of Πh that we cannot
reject at the α level. Any Πh that lies outside this interval constitutes an
hypothesis we can reject.

Three things will determine whether Πh will lie inside or outside the confidence
interval:
1. The size of the effect (how far Πh is from the true population mean µ),
2. The confidence level (1 - α), and
3. The sample size (N).

The lower the confidence level or the higher N, the narrower (more precise) the
confidence interval.

All three factors influence statistical power.
Therefore, power depends on the effect-size we wish to detect and the precision
of our confidence intervals (which in turn depend on α and N).
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Example 3.
Suppose our Πh = 0.5.
For sample sizes of 40, when Π = .75 rather than .65, power increases from .5 to
.9279, meaning that we should correctly reject the null hypothesis of µ = .5
about 93% of the time instead of just 50%.

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Π  = .75
(high power)

Π  = .65
(low power)

Likewise for samples of size N = 160 our 95% confidence intervals would be
about half as wide as those when N = 40. They would be far less likely to
contain .5, as can be seen from a comparison between the two sets of 25
experiments in the figure below.

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Ν = 160
(high power)

Ν = 40
(low power)
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Sampling Distributions when the Null Hypothesis is False
Noncentral Distributions
•  The most widely-used confidence intervals are based on "central"

distributions such as the t, F, and χ2 which would reflect reality if a null
hypothesis were true.

•  Many of our most useful statistics (e.g., Cohen's d and multiple R2),
however, are based on  "noncentral" t, F, and χ2 distributions that reflect
effects of independent variables and/or deviations when the null hypothesis
is false.

The noncentral t, F, and χ2 distributions are generalizations of their usual
(central) counterparts with an additional parameter known as a noncentrality
parameter. The more false the null hypothesis, the larger the noncentrality
parameter. The noncentrality parameter is therefore related to effect size and
power analysis (Cohen's 1988 book uses them).

Noncentral χχχχ2 Distribution
Suppose we have a collection of K normally distributed random variables
{Xi, i = 1, … , K} whose means are all 0 and whose variances are all σ2.
Then the sum of squares of these variables divided by σ2 (i.e., ΣXi

2/σ2) has a
central χχχχ2 distribution with K – 1 degrees of freedom.
This χ2  variable will have a mean of K – 1.

But what if the means of the K random variables are not all 0?
Suppose instead that each Xi has its own mean µi.
Then it turns out that ΣXi

2/σ2 has a noncentral χχχχ2 distribution with r = K – 1
degrees of freedom and a noncentrality parameter δ = Σµi

2/σ2.
This χ2 variable will have a mean of K – 1 + δ.

One useful interpretation of δ is that it is the sum of squared standardized
effects or deviations from 0. This interpretation may be directly applied to a
fixed-effects ANOVA model and chi-square statistics for contingency table
analysis.
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Noncentral F Distribution
The central F distribution is the ratio of two central χ2 variables.
A test for the equality of two variances, for instance, uses the F-ratio
conventionally defined by F = s1

2/s2
2. What’s missing from this definition is the

fact that the ratio really uses the χ2 variables s1
2/σ1

2 and s2
2/σ2

2, with the null-
hypothesis assumption that σ1

2 = σ2
2 so that they cancel each other out in the F-

ratio.

If we reintroduce σ1
2 and σ2

2 then we may set up a noncentral F distribution in
which σ1

2 ≠ σ2
2. A simple way to do this is to set σ2

2 = 1 so that σ1
2 is

considered as a multiple of σ2
2.

Thus, we put F = (s1
2/σ1

2)/s2
2.

Then our noncentral F distribution is the ratio of a noncentral χ2(df1, δ)
variable and a central χ2(df2) variable.

It takes only one more step to apply this setup to a fixed-effects ANOVA.
Consider a one-way experimental design with K conditions and n observations
in each condition.
Let α i be the treatment effect associated with the ith condition, and σ2 be the
error variance.
Then the F statistic with K – 1 and K(n – 1) degrees of freedom has a
noncentrality parameter
δ = nΣαi

2/σ2,
so that δ/n is the sum of squared standardized effects.

A confidence interval for δ also gives us a confidence interval for the sum of
those effects.
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Noncentral t Distribution
The central t distribution is a simple function of the ratio of two random
variables (say, W and V).
W has a normal distribution with a mean of 0 and standard deviation of 1.
V has a central χ2(r) distribution. Then if we put
T = W/(V/r)1/2,
T has a central t distribution with r degrees of freedom.

In its most common application T is the sample mean divided by the sample
standard error. If we rewrite the one-sample t statistic as

T = 
( ) ( )

σ
σµ

s
NX −

then we can see that W is the numerator of T and
V = SS/σ2

where SS is the sums of squares for X.

The assumption that gives this t statistic a central t distribution is that W has a
mean of 0 (i.e., the null hypothesis is true).

If W has a mean of E/(σ/√N) ≠ 0, then T has a noncentral t distribution with a
noncentrality parameter
δ = E/(σ/√N),
which is directly related to the standardized effect size.

Reminder: Cohen's d is the difference between the sample mean and the
population mean divided by the sample standard deviation:

 X – µ
sd =

Cohen's d measures the difference between the sample mean and the population
mean in standard deviation units so it is scale-free. For the one-sample case,
t = d√N.
So,
d = δ/√N.

This interpretation of δ may be applied not only to confidence intervals for
Cohen’s d but also for any standardized planned contrast.
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Noncentral Confidence Intervals: The Basics

The Inversion Confidence Interval Principle
Briefly, the main idea is to use the observed value of a test statistic (e.g., an
observed t-value) to initiate the search for the lower and upper limits to a 1 - α
confidence interval for the noncentrality parameter, which is then converted into
a confidence interval for an effect size. That is, we move through three stages:

test statistic Ø noncentrality parameter Ø effect statistic

Example 4.
A fictitious social facilitation study from Smithson (2000: 194-196) involves
measurements of twelve 800-metre runners' times under two conditions (no one
present vs one person present). The mean difference is 0.983 seconds faster for
the someone-present condition, and the sample standard deviation is 1.284.

Step 1.
Using the conventional α = .05, we would ordinarily calculate
t(11) = 0.983/(1.284/√12) = 2.65,
ascertain that it is larger than tα/2 = 2.201, and thereby conclude that we could
reject the null hypothesis.

We could construct a 95% confidence interval (CI) around the mean difference.
However, if we wanted to compare this social facilitation effect with that for
some other event (a foot-race over another distance, or swimming or cycling)
then we would also want a 'dimensionless' effect-size measure such as Cohen's
d:

 X – µ
sd = = 0.983/1.284 = 0.766.

To construct a 95% CI for Cohen's d requires us to use the noncentral t
distribution.

Step 2.
We already know the observed t(11) = 2.65. This also gives us a sample
estimate of the noncentrality parameter δ. At this point, we require a computer
routine to home in on a lower limit δL, corresponding to the noncentral t
distribution for which t(11) = 2.65 cuts off α/2 of its upper tail, and an upper limit
for δU corresponding to the noncentral t distribution for which 2.65 cuts off α/2 of
its lower tail.
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0.1

0.2

0.3

δ = 0.3604

δ = 4.8494

t(11) = 2.65

t values

95% conf. interval

•  For a noncentral t-distribution with δ = 0.3604 we would observe a sample
t(11) > 2.65 just 2.5% of the time; and

•  For a noncentral t-distribution with δ = 4.8494 we would observe a sample
t(11) < 2.65 just 2.5% of the time.

Step 3.
We already know that
d = δ/√N,
so we immediately have a 95% CI for d, namely
[0.3604/√12, 4.8494/√12] = [0.1040, 1.3999].

According to Cohen's (1988) effect-size guidelines,
d < 0.2 is "small,"
0.2 < d < 0.5 is "medium," and
d > 0.8 is "large."

Although d = 0.766 is a moderately large effect, our CI tells us that the true
effect-size could plausibly range from quite small (0.1040) to very large
(1.3999). That's because our sample size is small (N = 12).
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Example 5: Let's Do It!
Suppose you are reading an article that claims to have found a way of increasing
adult mathematical aptitude. They use a mathematics test that is normed for the
population from which their random sample came and find that the mean for
their sample is significantly higher than the population mean (t(35) = 3.6, p =
.005).
On the basis of just this information, we can answer these questions:
1. How big is the effect in terms of Cohen’s d?
2. What is a 99% CI for Cohen’s d?
3. What is the power of this study to detect an effect size of d = 0.2, 0.5, or 0.8

when α = .01?

1. First, convert t(35) to d by realising that since df = 35, N = 36 and so
d = t/√N = 3.6/6 = 0.6.
about medium-sized according to Cohen’s criteria.

2. Now, launch NoncT.sav, NoncT2.sps, and T2D.sps from the SPSS folder in
the Workshop folder. Bring the NoncT.sav data editor forward as the active
window.

•  In the tval column enter 3.6 as the value of the observed t statistic.
•  In the df column enter 35 as the df.
•  In the conf column enter 0.99 as the confidence level.
•  Now make the NoncT2.sps window the active window.
•  Under the Run menu select All to run the syntax.

You should find that in the lc2 column you have .7770 and in the uc2 column
you have 6.3844. These are the lower and upper limits of the 99% CI for δ, the
noncentrality parameter.

You may convert these limits to a 99% CI for d by dividing each of them by √N
= 6, to get
[0.1295, 1.0641].

To get SPSS to do this for you, in the T2D.sps window select the syntax
COMPUTE LOWD = LC2/SQRT(DF+1) .
COMPUTE HIGHD = UC2/SQRT(DF+1) .
EXECUTE.
and run that. You should find two new variables (lowd and highd) containing
the appropriate CI limits.
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3. Note that in the power column it says .8029, meaning that this study has
power of .8029 to detect an effect-size of 0.6 when α = .01.
To find out the power to detect an effect-size of d = 0.2, 0.5, or 0.8 under this
condition, follow these steps:

•  Create three new rows of data in the NoncT.sav window, all with df = 35
and conf = 0.99. Leave tval blank.

•  Create a new variable called d. Type in the values 0.2, 0.5, and 0.8 for your
three new rows.

•  Convert these d values to ones for tval by selecting the following syntax in
the T2D.sps window and running it:

COMPUTE TVAL = D*SQRT(DF+1) .
EXECUTE.

You should see tvals of 1.2, 3.0, and 4.8.
•  Now run the NoncT2.sps syntax. You should find that the power column

contains these values:
.0761, .6109, and .9768.

In short, the power of this study to detect small to medium effects is not
very high.

And something extra!
You can also find out what the 99% CIs would be like if the observed effect
sizes were 0.2, 0.5, or 0.8. To do this:

In the T2D.sps window select the syntax
COMPUTE LOWD = LC2/SQRT(DF+1) .
COMPUTE HIGHD = UC2/SQRT(DF+1) .
EXECUTE.

and run that.

You should find lowd and highd now display the appropriate CI limits for d.
You can see that for d = 0.2 you would not be able to reject the null hypothesis,
and you can barely do so for d = 0.6.

Notice also that although power increases as we go from d = 0.2 to 0.8, the
width of the CIs does not decrease (Why not?? Hint: What increases power but
doesn't make CIs narrower?).
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Using Power and Precision to Design Studies

Relationship between Noncentral CIs and Power Analysis
Exploring the effect of sample size and effect size on the width and location of
CIs may be used to good effect in designing studies. Since this is usually a role
played by power analysis, how are noncentral CI widths and power related?

All else being equal, the narrower the CI and/or the greater the effect size, the
greater the power. Narrower CIs are obtained with large N and/or low
confidence.

Power analysis involves the same sampling distributions as noncentral CIs.
Nonetheless, noncentral CIs provide different information from power analysis;
high power does not entail precise estimation nor vice-versa.

Example 6: Let's Do It!
Suppose we have two criteria for a study using a one-sample t-test:
1. The study should detect d > 0.3 when α = .01 with power of at least 0.9, and
2. The 99% CI for an observed d near 0.3 should be no wider than 0.30.

First, create a table of candidate sample sizes:
•  In the NoncT2.sav data-editor, create six rows of data.
•  In the conf column enter 0.99 for all rows.
•  In the df column enter 49, 99, 149, 199, 249, and 299 respectively.
•  Enter values for d of 0.3 for all six rows.

Then…
•  Convert the d values to tval by selecting the syntax in the T2D.sps window

and running it:
COMPUTE TVAL = D*SQRT(DF+1) .
EXECUTE.

You should see tvals ranging from 2.1213 to 5.1962.
•  Now run the NoncT2.sps syntax. You should find in the power column that

for df = 149 power is .8548. So a sample size of about 150 would fulfil the
first criterion.   

•  In the T2D.sps window select the syntax
COMPUTE LOWD = LC2/SQRT(DF+1) .
COMPUTE HIGHD = UC2/SQRT(DF+1) .
EXECUTE.

and run that. You should find that the width of the 99% CI for d does not
narrow down to 0.30 until df = 299 (i.e., N = 300). The second criterion is
clearly much more stringent than the first.
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Noncentral CIs for ANOVA and Regression

Fixed-Effects Factorial ANOVA
Confidence intervals for effects in a fixed-effects ANOVA are based on the
noncentral F distribution. When the null hypothesis is false, F(df1,df2) has a
noncentral F distribution with a noncentrality parameter δ that may be estimated
by
δ = (df1/df2)(F)(df1 + df2 + 1).

The effect-size, measured by partial η2, is related to δ and F by:
η2 = δ/(δ + df1 + df2 + 1) = (df1)F/[df2 + (df1)F].

Example 7: Let's Do It!
Suppose we have a 2x7 factorial ANOVA with 4 observations per cell.
•  Row effect F(1,42) = 6.00 (p = .0186),
•  Column effect F(6,42) = 2.65 (p = .0285), and
•  Interaction effect F(6,42) = 2.50 (p = .0369).
The researchers could be forgiven for supposing that the row effect was the "most
significant," followed by the column effect.

But partial η2 values tell a different story. From the formula above we find
•  Row effect ηα

2 = .1250,
•  Column effect ηβ

2 = .2746, and
•  Interaction effect ηγ

2 = .2632.
The row effect is, in fact, the smallest effect.

Now suppose we construct 90% CIs for these η2 values.
First, launch NoncF.sav, NoncF3.sps, and F2R2.sps from the SPSS folder in

the Workshop folder. Bring the NoncF.sav data editor forward as the active
window.

•  Create three rows of data.
•  In the fval column enter the F-values 6.00, 2.65, and 2.50.
•  In the df1 column enter 1, 6, and 6.
•  In the df2 column enter 42 for all three rows.
•  In the conf column enter 0.90 as the confidence level.
•  Now make the NoncF3.sps window the active window.
•  Under the Run menu select All to run the syntax.
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You should see values in the lc2 and uc2 columns corresponding to the δ
intervals and in the lr2 and ur2 columns corresponding to the η2 intervals shown
below:
Row effect δα interval = [0.5208, 17.1211], ηα

2 interval = [.0117, .2801];
Column effect δβ interval = [0.8699, 27.2893], ηβ

2 interval = [.0174, .3577];
Interaction effect δγ interval = [0.4621, 25.8691], ηγ

2 interval = [.0093, .3455].

The CI is narrowest for the row effect because the row effect has df1 = 1 and df2
= 42, whereas the column effect and interaction effects both have df1 = 6 and df2
= 42. This is what is driving the differences in the significance-levels of the F
tests.

Power and One-Sided vs Two-Sided CIs
The usual F-test is a one-tailed test. Power for the F-test is therefore associated
with just one tail, and also with a one-sided CI.
In NoncF3.sps,  power is computed using α = (1-CONF)/2.
For instance, setting CONF = .90 gives us power for α = .05 and a 95% one-
tailed CI as well as a 90% two-tailed CI.

Example 8: Let's Do It!
Let's compare the power of our 2x7 factorial design to detect η2 = .125 for the
row versus the column effect, when α = .05.
•  In the second row of NoncF.sav, change r2 value to .1250 (the same as the

value in the first row).
•  In F2r2.sps, select the following syntax:

COMPUTE FVAL = (R2/(1-R2))*(DF2/DF1) .
EXECUTE .

and run it. You should see fval for the second row change to 1.000.
•  Run the syntax in the NoncF3.sps window. You should find power for the

first row is .6878, but for the second row is only .4068.
•  As a bonus, you'll find the lower limit of a one-sided 95% CI for η2 in the lr2

column-- .0117 for the row effect but 0 for the column effect.
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Regression
Constructing CIs or conducting power analysis for R2 requires that we stipulate
whether our regression setup involves fixed-score or random-score regressors. .
Fixed scores are preplanned or given whereas random scores arise from random
sampling.

•  Fixed scores: Noncentral F is the sampling distribution of the F-statistic and
we therefore get R2 via the Inversion Confidence Interval Principle as in
ANOVA.

•  Random scores: The noncentral F distribution can no longer be used here. In
this case we have Fisher's (1928) distribution for R2, whence we use a
program like Steiger & Fouladi’s R2 for constructing our CIs.

Power will be higher and the CIs narrower under fixed-score regression simply
because there are fewer sources of sampling error.

Fixed-score Regression:
Suppose we have two sets of predictors, A and B, where
w = # of predictors in set A
u = # of predictors in set B.
Define df1 = u and df2 = N - u - w  - 1.

Then the F-statistic that tests the significance of the contribution of set B after
set A has already been included in the model is related to its noncentrality
parameter by
δ = (df1/df2)(F)(df1 + df2 + 1).

The effect-size, measured by partial R2, is related to δ and F by:
R2 = δ/(δ + df1 + df2 + 1) = (df1)F/[df2 + (df1)F].

If w = 0 then we get a CI for multiple R2 for a model with u predictors in it.
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Example 9: Let's Do It!
Tabachnick and Fidell’s (1996: 174-193) regression example has number of
visits to health professionals (timedrs) being predicted by three independent
variables.
The sample size is N = 465, so df1 = 3 and df2 = 461.
Their SPSS output tells us that F(3,461) = 92.901 and multiple R2 = .3768.
Let's construct the 90% CI around R2 assuming a fixed-score regression model.

•  Pick a row in the NoncF.sav data editor, and in the fval column enter the F-
value 92.901.

•  In the df1 column enter 3.
•  In the df2 column enter 461.
•  In the conf column enter 0.90 as the confidence level.
•  Run the NoncF3.sps synatx.

You should get a 90% CI for the noncentrality parameter of  [217.3965,
342.5157], which translates to a CI for R2 of [.3186, .4242].

R2, on the other hand, is what we use for the random-score model. It gives us a
wider 90% CI of [.31462, .43165].
•  To run R2, open the R2 folder and double-click on the R2 icon.
•  Hit any key, and the ensuing dialog box will tell you how to use the arrow

keys to get around in the menu.
•  Once you are in the Confidence Interval item under the Options menu, you

will need to enter number of observations (465), number of variables (4), R-
squared (.3768), and Confidence Level (.9).

•  When you select Go and hit Enter, you'll need to hit another key to display
the results. The Lower Limit and Upper Limit are the limits for the two-sided
CI; the Lower Bound of .32767 is the lower limit on a one-sided CI.

•  To exit R2, arrow to the File menu, hit Enter, arrow down to the Exit option,
and hit Enter.
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