title 'car sales example'; data carsales; input Initial prob NFCC ctrNFCC; cards; 0.0 0.25 3.22 -0.3438686663342411 0.0 0.25 4.02 1.190403129914463 1.0 0.8 3.7 0.5766944114149821 0.0 0.5 4.34 1.8041118484139458 1.0 0.25 3.6 0.38491043688389376 1.0 0.5 4.1 1.3438303095393338 0.0 0.5 4.39 1.9000038356794897 1.0 0.25 4.18 1.4972574891642045 1.0 0.25 3.46 0.11641287254037005 0.0 0.5 4.26 1.6506846687890753 1.0 0.5 3.88 0.9219055655709403 0.0 0.2 3.61 0.40408883433700216 0.0 0.5 3.73 0.6342296037743081 1.0 0.25 2.66 -1.417858923708335 1.0 0.5 2.75 -1.245253346630356 0.0 0.3 2.97 -0.8233286026619616 0.0 0.5 3.23 -0.3246902688811327 1.0 0.25 3.68 0.5383376165087644 0.0 0.25 2.86 -1.0342909746461593 0.0 0.36 3.83 0.8260135783053966 1.0 0.18 3.59 0.3657320394307845 1.0 0.1 3.36 -0.0753711019907183 0.0 0.5 3.45 0.09723447508726164 0.0 0.25 2.9 -0.9575773848337239 0.0 0.25 3.08 -0.6123662306777649 0.0 0.5 3.96 1.075332745195811 1.0 0.5 3.43 0.05887768018104397 1.0 0.2 4.29 1.708219861148402 0.0 0.5 3.59 0.3657320394307845 1.0 0.25 3.56 0.3081968470714584 1.0 0.25 3.74 0.6534080012274175 1.0 0.33 3.93 1.0177975528364849 1.0 0.4 3.19 -0.4014038586935681 0.0 0.5 3.33 -0.1329062943500444 1.0 0.25 3.03 -0.7082582179433095 1.0 0.5 2.7 -1.3411453338958996 1.0 0.2 3.43 0.05887768018104397 1.0 0.25 3.7 0.5766944114149821 0.0 0.25 3.02 -0.7274366153964179 0.0 0.25 3.29 -0.20961988416247973 1.0 0.25 4.5 2.110966207663687 0.0 0.2 4.0 1.1520463350082464 0.0 0.5 3.38 -0.037014307084500625 1.0 0.5 3.07 -0.6315446281308741 1.0 0.5 1.75 -3.1630930919412377 0.0 0.25 2.5 -1.7247132829580765 1.0 0.25 2.99 -0.7849718077557439 0.0 0.3 3.01 -0.7466150128495271 0.0 0.5 2.77 -1.2068965517241383 1.0 0.25 4.09 1.3246519120862255 1.0 0.32 2.96 -0.8425070001150708 0.0 0.5 3.27 -0.2479766790686974 0.0 0.2 3.09 -0.5931878332246564 1.0 0.25 4.05 1.24793832227379 0.0 0.25 3.3 -0.1904414867093713 1.0 0.5 3.18 -0.4205822561466765 0.0 0.46 3.9 0.960262360477158 1.0 0.5 3.68 0.5383376165087644 0.0 0.5 3.41 0.020520885274826303 1.0 0.9 3.65 0.4808024241494375 0.0 0.2 3.37 -0.05619270453760904 0.0 0.5 3.39 -0.017835909631391367 0.0 0.25 2.12 -2.4534923861762112 1.0 0.25 3.11 -0.5548310383184387 0.0 0.5 3.47 0.1355912699934793 1.0 0.35 3.79 0.7492999884929612 0.0 0.15 2.38 -1.9548540523953826 0.0 0.25 2.4 -1.9164972574891648 0.0 0.45 3.11 -0.5548310383184387 1.0 0.5 2.07 -2.549384373441756 1.0 0.25 2.89 -0.9767557822868322 1.0 0.7 4.21 1.5547926815235313 0.0 0.4 3.87 0.9027271681178319 0.0 0.1 2.87 -1.01511257719305 1.0 0.4 2.56 -1.6096428982394235 1.0 0.5 4.36 1.8424686433201645 0.0 0.5 3.67 0.5191592190556552 1.0 0.25 3.75 0.6725863986805258 1.0 0.8 4.12 1.3821871044455523 1.0 0.5 3.97 1.0945111426489202 0.0 0.6 2.82 -1.1110045644585946 0.0 0.5 2.94 -0.8808637950212885 1.0 0.4 3.08 -0.6123662306777649 0.0 0.5 3.08 -0.6123662306777649 1.0 0.15 3.89 0.9410839630240495 0.0 0.5 3.31 -0.17126308925626205 1.0 0.85 3.5 0.1931264623528054 0.0 0.5 4.28 1.6890414636952937 1.0 0.2 3.58 0.3465536419776761 1.0 0.33 2.65 -1.4370373211614444 0.0 0.2 3.45 0.09723447508726164 1.0 0.1 3.21 -0.3630470637873504 1.0 0.1 4.25 1.6315062713359667 1.0 0.25 3.46 0.11641287254037005 1.0 0.5 3.22 -0.3438686663342411 1.0 0.4 3.72 0.6150512063211998 0.0 0.2 3.58 0.3465536419776761 0.0 0.25 2.71 -1.3219669364427913 0.0 0.5 3.67 0.5191592190556552 0.0 0.4 3.95 1.0561543477427027 0.0 0.2 2.95 -0.8616853975681793 0.0 0.25 3.56 0.3081968470714584 0.0 0.5 3.73 0.6342296037743081 1.0 0.25 3.31 -0.17126308925626205 1.0 0.8 4.57 2.2452149898354494 0.0 0.2 2.96 -0.8425070001150708 0.0 0.5 3.57 0.32737524452456684 1.0 0.2 3.15 -0.4781174485060034 1.0 0.5 4.01 1.1712247324613547 0.0 0.5 3.73 0.6342296037743081 0.0 0.5 2.54 -1.647999693145641 0.0 0.9 3.12 -0.5356526408653295 0.0 0.5 3.48 0.15476966744658774 0.0 0.3 3.76 0.6917647961336343 0.0 0.6 2.6 -1.5329293084269882 0.0 0.15 3.8 0.7684783859460697 0.0 0.25 2.85 -1.0534693720992676 1.0 0.5 3.84 0.8451919757585049 1.0 0.2 3.66 0.49998082160254675 0.0 0.98 4.21 1.5547926815235313 1.0 0.25 3.63 0.44244562924321984 1.0 0.5 3.6 0.38491043688389376 0.0 0.5 3.35 -0.0945494994438267 1.0 0.999 3.63 0.44244562924321984 0.0 0.5 3.99 1.1328679375551378 0.0 0.5 2.37 -1.974032449848491 0.0 0.2 3.12 -0.5356526408653295 1.0 0.6 3.54 0.26984005216524076 1.0 0.6 3.17 -0.4397606535997857 0.0 0.5 3.12 -0.5356526408653295 1.0 0.2 3.63 0.44244562924321984 1.0 0.25 3.26 -0.26715507652180664 1.0 0.5 2.87 -1.01511257719305 0.0 0.5 2.97 -0.8233286026619616 1.0 0.25 3.29 -0.20961988416247973 1.0 0.25 3.55 0.28901844961834916 1.0 0.5 3.13 -0.516474243412221 0.0 0.5 3.05 -0.6699014230370918 1.0 0.2 3.0 -0.7657934103026355 0.0 0.5 3.51 0.21230485980591382 0.0 0.5 2.87 -1.01511257719305 0.0 0.5 3.28 -0.228798281615589 0.0 0.4 4.26 1.6506846687890753 1.0 0.37 3.17 -0.4397606535997857 0.0 0.75 3.17 -0.4397606535997857 1.0 0.25 2.88 -0.9959341797399416 0.0 0.5 3.34 -0.11372789689693596 1.0 0.25 3.55 0.28901844961834916 1.0 0.5 2.49 -1.7438916804111848 0.0 0.4 3.14 -0.4972958459591118 1.0 0.13 3.55 0.28901844961834916 1.0 0.25 3.31 -0.17126308925626205 1.0 0.5 3.56 0.3081968470714584 1.0 0.25 3.77 0.7109431935867435 0.0 0.5 3.95 1.0561543477427027 ; run; ; proc nlmixed data = carsales tech = trureg hess cov itdetails; *Starting values; parms B01 = -0.3, G01 = -1.0, Q1 = 0.25, Q11 = -0.6, Q2 = -0.7, Q12 = 0.5, Q13 = -0.5; title 'prob on Initial and NFCC (example 3 code), mixture model'; *This is the final model; *Initial is the Car versus Salesperson prime; *NFCC is the mean of the need for certainty and need for closure scores; *ctrNFCC is NFCC transformed to a z-score variable; *Composition submodel; C1 = EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)/(1+EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)+EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)); C2 = EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)/(1+EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)+EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)); *Location submodel; M1 = EXP(B01)/(1+EXP(B01)); M2 = 1/2; M3 = 1/4; *Dispersion submodel; PHI1 = EXP(-G01); D = .01; ll = log((1-C1-C2)*PDF('BETA',prob, M1*PHI1, PHI1 - M1*PHI1,0,1)+C1* PDF('BETA',prob,1,1,M2-D,M2+D)+C2* PDF('BETA',prob,1,1,M3-D,M3+D)); model prob ~ general(ll); ; run;