COMMENT spss code for Example 3 . COMMENT This is the final model . COMMENT Initial is the Car versus Salesperson prime. COMMENT NFCC is the mean of the need for certainty and need for closure scores. COMMENT ctrNFCC is NFCC transformed to a z-score variable. MODEL PROGRAM B01 = -0.3 G01 = -1.0 Q1 = 0.25 Q11 = -0.6 Q2 = -0.7 Q12 = 0.5 Q13 = -0.5 . COMPUTE #DV = prob . COMMENT Composition submodel . COMPUTE #C1 = EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)/(1+EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)+EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)) . COMPUTE #C2 = EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)/(1+EXP(Q1 + Q11*Initial + Q12*ctrNFCC + Q13*Initial*ctrNFCC)+EXP(Q2 - Q11*Initial - Q12*ctrNFCC - Q13*Initial*ctrNFCC)) . COMMENT Location submodel . COMPUTE #M1 = EXP(B01)/(1+EXP(B01)) . COMPUTE #MU = (1-#C1-#C2)*#M1 + #C1/2 + #C2/4 . COMPUTE #M2 = 1/2 . COMPUTE #M3 = 1/4 . COMMENT Dispersion submodel . COMPUTE PHI1 = EXP(-G01) . COMPUTE #D = .01 . COMPUTE PRED_ = #MU . COMPUTE RESID_ = #DV - PRED_ . COMPUTE LL = LN(MAX(0.001, (1-#C1-#C2)*PDF.BETA(#DV, #M1*PHI1, MAX(0.001, PHI1 - #M1*PHI1))+ #C1*PDF.UNIFORM(#DV, #M2-#D, #M2+#D) + #C2*PDF.UNIFORM(#DV, #M3-#D, #M3+#D))) . COMPUTE LOSS_ = -LL . COMMENT To get bootstrap estimates, put /BOOTSTRAP n statement before /CRITERIA statement. COMMENT To save predicted values, residuals and gradient put /SAVE PRED RESID DERIVATIVES before /CRITERIA statement. CNLR prob /OUTFILE='C:\SPSSFNLR.TMP' /PRED PRED_ /LOSS LOSS_ /CRITERIA STEPLIMIT 2 ISTEP 1E+20 .