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Beta Regression Finite Mixture Models of

Polarization and Priming

Michael Smithson
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Edgar C. Merkle

Wichita State University

Jay Verkuilen

Graduate Center, City University of New York

This paper describes the application of finite-mixture general linear models based

on the beta distribution to modeling response styles, polarization, anchoring, and

priming effects in probability judgments. These models, in turn, enhance our

capacity for explicitly testing models and theories regarding the aforementioned

phenomena. The mixture model approach is superior in this regard to popular

methods such as extremity scores, due to its incorporation of three submodels

(location, dispersion, and relative composition), each of which can diagnose spe-

cific kinds of polarization and related effects. Three examples are elucidated using

real data sets.

Keywords: beta distribution; mixture model; polarization; priming; anchoring

1. Introduction

Most of the research on probability judgments and other doubly bounded scales

has used traditional analysis of variance (ANOVA) and linear regression to model

responses, ignoring the scale bounds, assuming homogeneity of variance, and focus-

ing exclusively on modeling the mean response. Likewise, research on attitude

polarization, anchoring, and priming effects has been hampered by a lack of appro-

priate and useful analytical techniques. For the most part, experimental studies on

these topics use normal-theory linear regression (predominantly ANOVA) to track

mean responses. Data from studies on these topics can be multimodal with severe

skews in both directions, heteroscedastic, and have floor or ceiling effects. Tradi-

tional methods such as normal-theory linear regression are problematic, first

because they ignore scale bounds, and second because the assumptions required

by such methods preclude investigating several distinct and relevant phenomena.
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In addition to attitudinal extremity and polarization, these problems extend to cog-

nitive topics such as priming, anchoring, additivity of probability judgments, and

probability weighting.

This paper describes the use of finite-mixture generalized linear models

(GLMs) based on the beta distribution for modeling response styles and related

phenomena in probability judgments. These models, in turn, enhance our capacity

for explicitly testing models and theories regarding the aforementioned phenom-

ena. We will focus primarily on polarization, anchoring, and priming effects.

2. Extremity and Polarization

Polarization and extreme-response phenomena are of interest primarily in

social and organizational psychology, especially in research on attitudes and

norms. These phenomena typically arise in settings where there are sharply

divided groups and/or strong pressures toward conformity. However, they also

can arise in cognitive psychological research, particularly in processing ambig-

uous stimuli. Extreme responses refer to either strong endorsement of or strong

opposition to an attitude or belief. Polarization refers to strong disagreement

between individuals or groups on an issue, such that some people strongly

endorse and others strongly oppose the attitude or belief concerned, with few

taking a middle position. Extreme-response phenomena thereby include polariza-

tion as a special case. Because an indication of strength of endorsement is

required to identify whether polarization or extreme response has occurred, stud-

ies of polarization utilize response scales designed to measure this strength.

A widely used approach to studying polarization is extremity scores, that is,

absolute deviations from scale midpoints (e.g., Brauer, Judd, & Gliner, 1995;

Downing, Judd, & Brauer, 1992). Extremity scores usually are modeled via

conventional GLMs, although it is debatable whether normal-theory GLMs are

appropriate for them. However, extremity scores are potentially misleading on

the following grounds:

1. Because extremity scores ignore the sign of the deviation, it is possible for extre-

mism to exist without polarization. In fact, extremity scores are not always capable

of distinguishing between a unimodal strongly skewed distribution (as in a

strongly consensual sample of extremists) from a bimodal bi-skewed distribution

(as in a strongly polarized sample of extremists). If the bimodal distribution were

symmetrical, then extremity scores would superimpose the left-side component

distribution onto its right-side twin, rendering this case indistinguishable from the

case where all of the data were concentrated in one or the other component

distribution.

2. The relative size of polarized groups may change without mean extremity chang-

ing when the groups are equidistant from the center of the scale. In this case, extre-

mity scores are incapable of distinguishing between a tiny minority–large majority

polarization and an equal-sized groups polarization.
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3. The overlap between polarized groups may change without mean extremity

changing, because the means may be unaffected by changes in dispersion.

Mean-response models of extremity scores cannot distinguish between two widely

dispersed overlapping distributions and two tightly clumped nonoverlapping dis-

tributions with the same means.

Thus, polarization cannot be completely modeled using extremity scores because

simple extremism ignores essential specifics of polarization.

A second approach to studying polarization posits two (or more)

subpopulations that are distinguishable in their distributions on an attitude mea-

sure. Latent class (Heinen, 1996) and taxometric (Waller & Meehl, 1998) tech-

niques are examples of this approach. In the past two decades, several models

that combine latent class and latent trait models have been developed to allow

a distinct latent trait model to apply within each latent class (see Fieuws,

Spiessens, & Draney, 2004). The approach we adopt here belongs to the same

class of mixture models. However, hybrid latent class–latent trait models are

oriented primarily toward the assumption that latent categories (or taxa) exist.

Unlike taxa, polarization is not an all-or-nothing phenomenon and therefore

requires models that predict when it will appear and disappear or wax and wane.

Our approach permits polarization to manifest itself in varying degrees. The

distance between polarized clumps, their degree of overlap, and their relative

sizes all may vary and these can be modeled using our framework.

Our approach starts by considering a finite mixture-distribution that models

polarization effects as influencing component distribution means, precision, and

relative composition. The model assumes two or more subpopulations, each with

its own component distribution. Given a collection of Y1; :::; Yn independent

identically distributed random variables, the probability density function (pdf)

of Yi is expressible as a weighted sum of two or more component pdfs:

X
j

gjifji yð Þ; ð1Þ

for j ¼ 1; :::; J , where 0 � gji � 1 and
P

j gji ¼ 1.

If Y also is bounded below and above (doubly bounded), then we require a

distribution whose support is restricted to the range of Y . Without loss of general-

ity, we shall assume from here on that the support is the [0,1] interval. In some

applications, we shall assume each fjiðyÞ is a Beta ðωj; tjÞ pdf. We reparameterize

these component distributions in terms of a location (mean), mj ¼ ωj=ðωj þ tjÞ
and precision parameter fj ¼ ωj þ tj (for further details, see Smithson & Ver-

kuilen, 2006). Note that the term ‘‘precision’’ is used differently here from its

conventional meaning as the reciprocal of the variance. This precision parameter

is independent of the mean, whereas the variance of the beta distribution,

s2 ¼ mð1� mÞ=ðfþ 1Þ, is not.
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The resulting GLM has three submodels, whereby we can individually

examine effects of predictor variables on the location, precision, and relative

composition parameters. The location submodel is

gðmjiÞ ¼
X

k

bjkXjki; ð2Þ

for j ¼ 1; 2; :::; J � 1 and for k ¼ 0; 1; :::;K where the link function is the logit

gðvÞ ¼ logðv=ð1� vÞÞ, the Xjki are predictors and the bjk are coefficients. Thus,

this submodel predicts a change of bjk in the logit of mji for every unit change in

Xjki. The dispersion submodel is

hðfjiÞ ¼
X

m

�djmWjmi; ð3Þ

for m ¼ 0; 1; . . . ;M where hðvÞ ¼ logðvÞ. This submodel is related to dispersion

as well as precision because of the negative sign given to the djm coefficients, so

that larger values predict greater dispersion (lower precision). The relative com-

position submodel (predicting the relative size of the component distributions) is

gji ¼
exp

P
p yjpZjpi

� �

1þ
PJ�1

k¼1

exp
P

p ykpZkpi

� � ; ð4Þ

for j ¼ 1; . . . ; J � 1 and p ¼ 0; 1; . . . ;P. The J th component gJi is defined by

gJi ¼ 1�
XJ�1

j¼1

gji:

This submodel is linearizable via the inverse transformation

log gji=gJi

� �
¼
X

p
yjp Zjpi: ð5Þ

All three submodels may be simultaneously estimated using the standard

maximum likelihood approach.

Mixture models can be unidentified, so the question of identifiability is

reasonable to raise here. Although it is not possible to provide a definitive

answer, we ran a simulation in Mathematica v.7 for a two-component model,

varying the beta distribution parameters to simulate three conditions:

1. Fairly precise distributions that may overlap, with ωj and tj, given uniform distri-

butions over the [1,25] interval;

2. One fairly imprecise distribution and a precise distribution, with ω1 given a

uniform distribution over [0.1,1], and ω2 and tj given uniform distributions over

[1,10]; and
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3. Two fairly imprecise distributions that may overlap, with ωj given a uniform

distributions over [0.1,1], and tj given uniform distributions over [1,10].

Each condition was run 5,000 times and the rank of the Jacobian matrix was

computed for each run. Of the 15,000 runs, 14,758 (98.4%) produced a

full-rank Jacobian, suggesting that this model is identified a large portion of

the time under realistic conditions. Of course, this demonstration does not

obviate the need to check whether a model is identified in a particular

application.

As Verkuilen and Smithson (in press) observe, beta regression GLMs pose prob-

lems for model diagnostics that are open questions in the GLMM literature, and

a complete discussion of these is beyond the scope of this paper. Model com-

parison under maximum likelihood estimation is reasonably straightforward

because the beta is a member of the exponential family. Model evaluation and

checking entail three issues: How accurately the model ‘‘predicts’’ the data, the

influence of individual data points, and how appropriately the model assigns

cases to component distributions. The fit between the model and the data can

be evaluated by assessing how well the mean and variance structures are repro-

duced and via simulations from the posterior predictive density. Influence poses

some difficulties, because even a one-component beta GLM lacks an appropriate

residual or deviance. The alternatives proposed in the recent literature for asses-

sing influence are reviewed in Verkuilen and Smithson.

In many applications of the kind we have in mind here, case membership in com-

ponent distributions is unobserved so there is no way to assess how accurately the

model recovers the assignment of cases to component distributions. Nevertheless,

if none of the component distributions is degenerated, then the model may be eval-

uated for how well separated the component posterior predictive densities are at each

data point. We illustrate such procedures in our examples.

We can have models in which covariates predict one or more means of the

fjiðyÞ, the mixture parameters, or the precision parameters of the fjiðyÞ. Thus,

there are three distinguishable, ‘‘pure’’ kinds of polarization phenomena:

1. Location drift: Only the component distribution means are predicted by covariates.

Polarization changes only as a function of the distance between the means of the

component distributions, whose precision parameters and relative sizes remain

constant.

2. Dispersion drift: Only the component distribution precision parameters are

predicted by covariates. Polarization changes as a function of the overlap

between the component distributions, whose means and relative sizes remain

constant.

3. Composition shift: Only the relative composition parameters are predicted by

covariates. Polarization changes only as a function of the relative sizes of the com-

ponent distributions, whose means and variances remain constant.

Smithson et al.
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It may be somewhat unusual to find pure instances of any of these, but the

crucial point is that the approach is capable of distinguishing among the three

manifestations of polarization and separate effects of independent variables

on each of them, via the three submodels developed earlier. We shall see

that this separability enables testing hypotheses that otherwise would be

misspecified and identifying effects that otherwise would be obscured.

3. Specified Anchors

Probability judgment tasks require judges to assign (usually numerical)

estimates of probabilities of events. Judges are said to ‘‘anchor’’ their estimates

on a particular value if their initial estimates tend to be close to that value and are

shifted by new evidence to a lesser extent than would be the case for a Bayesian

agent. Some research on probability judgments investigates whether judges can

be ‘‘primed’’ to focus on a specific anchor. When the location of an anchor can be

specified a priori, a reasonable choice of mixture model has one component

distribution’s location parameter fixed at the anchor location. In the literature

on probability judgments, partition priming presents one example of specifiable

anchors, where subjective prior probabilities are centered on 1/K by judges being

primed to believe that there are K possible events (see, e.g., Fox & Rottenstreich,

2003). Where there is a normatively correct partition, we say that the anchor is

‘‘normatively specified.’’ Normatively specified anchors from research on

probability judgments include:

1. Anchoring on 1/K when there is a correct K-fold partition;

2. Additivity when probabilities are required to sum to 1 across a collection of events;

3. ‘‘Correct’’ conditional or compound probabilities (e.g., according to the rules of

probability theory or Bayesian updating); and

4. Conjugacy of lower and upper probabilities (i.e., lower P(A)¼ 1 – upper P(NotA),

where lower P(A) and upper P(A) are an interval containing P(A)).

Examples of specified anchors that are not normative include:

1. Anchoring on 1/K, given an arbitrary (or incorrect) K-fold partition;

2. Additivity for probabilities of events that do not form an exhaustive, mutually

exclusive collection of events; and

3. The use of 1/2 as a probability assignment for signifying complete ignorance of the

likelihood of an event, regardless of how many events there are in the partition.

The fact that these anchors are specified pointwise has implications for

constructing a mixture model to test them. First, the location parameter of at least

one component in the model should be fixed at the value of the anchor.

For instance, a hypothesized anchor on 1/K should be tested with a model that has
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1/K fixed as the location parameter value for one of the mixture components, rather

than allowing that parameter to be free for estimation. The most common example of

this kind of model is the ‘‘zero-inflated’’ mixture model where 0 is the fixed location

of a component distribution in a mixture model (see Lindquist & Gelman, 2009, for a

recent example of such a model involving correlation coefficients).

Second, the researcher must decide whether to fix the precision parameter as

well in the anchor-specific component distribution or estimate it. For maximum

likelihood estimation (MLE), there are three options:

1. Assume infinite precision, that is, the anchor component distribution concentrates

all of its mass at one point;

2. Assign a fixed precision parameter value for the anchor component distribution; or

3. Estimate the precision parameter for the anchor component distribution from the

data.

The main drawback to the first option is that it rules out ‘‘near-misses’’ in the

form of subjective estimates that are close to the anchor value. We recommend

using it only when a strictly pointwise anchor is required by definition (e.g., as in

a zero-inflated regression model) or when it is expected that normatively

calibrated subjective estimates will be error-free. The second alternative can

be set up to tolerate near-miss data, but it requires that the analyst impose an a

priori precision parameter value. This option should therefore include a sensitiv-

ity analysis regarding the impact of the precision parameter value. The third

option is viable if sufficiently stable estimates can be found. However, we have

found in a number of applications that the low dispersion of sample data around

an anchor renders precision parameter estimates unstable in these mixture mod-

els. That was the case for the examples presented in this paper, and so only the

first and/or second options are employed in this paper.

A Bayesian approach admits another option, namely, an informative prior for

the precision parameter instead of a fixed value. We illustrate this alternative in

our examples, using Monte Carlo Markov Chain (MCMC) estimation. The

appropriate sensitivity analysis here is similar to that for the MLE second option,

that is, varying the input parameters of the informative prior and assessing the

stability of the posterior estimates.

In the following sections, we provide three examples of the above models

using probability judgment data.

4. Example 1: Pure Composition Shift

Smithson and Segale (2009) conducted an experiment on judged probabilities

with a 2� 2 factorial design. For the first experimental factor, half the partici-

pants were primed to think that there were two alternatives (the ‘‘case prime’’:

Either Sunday will or will not be the hottest day of the week) and half were

Smithson et al.
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primed to think there were seven alternatives (the ‘‘class prime’’: Of the 7 days in

the week, Sunday will be the hottest). Their hypothesis was that participants’

estimates of the probability that Sunday would be the hottest day would anchor

around 1/2 in the first condition and 1/7 in the second. Participants were asked for

probability estimates that the answer to this question would be ‘‘Yes,’’ and for the

probability that it would be ‘‘No.’’ For the second experimental factor, half

the participants were asked to give a precise probability as their estimate and

the other half were asked to give a lower and upper probability as their estimate.

The purpose of this manipulation was to determine whether people would be as

prone to partition-priming effects when providing imprecise probabilities as

when using precise probabilities. Imprecise probabilities were rendered compa-

rable with precise probabilities by averaging the lower and upper probability

FIGURE 1. Component distributions for class and case primes.
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estimates (see Smithson & Segale, 2009 for a justification of this approach over

alternatives). Figure 1 shows the distributions of the ‘‘Yes’’ probabilities under

the four combinations of conditions.

We present an analysis of the ‘‘Yes’’ probabilities that differs from the

approach taken by Smithson and Segale. They used a mixture model in which

location parameters in both component distributions were free, but the preci-

sion parameters were assumed to be equal. Here, we fix the anchor component

distribution’s mean at 1/2 and estimate the second component mean. Models in

which both precision parameters were free and therefore separately estimated

proved unstable. These models were unable to converge on an estimate of the

precision parameter for the anchor component distribution. Therefore, we

adopt the second option for handling the anchor component distribution’s pre-

cision parameter, that is, varying its value systematically to determine the

robustness of the model against different assignments thereof. Thus, we allow

for ‘‘near misses,’’ which are especially relevant to those in the imprecise

probability estimation condition.

While the results do not differ substantively from the findings reported in

Smithson and Segale, they do point to some pertinent considerations in this kind

of modeling exercise. Table 1 displays the results for the best model obtained by

Smithson and Segale (first row) and by our approach for the ‘‘Yes’’ probability

judgments when the anchor component distribution’s precision parameter d20 is

set to values of �2;�4;�8, and �12, that is, decreasing variance as the para-

meter decreases. For all such values, the best model was one with main effects

on composition shift from partition (twofold vs. sevenfold) and elicitation

method (precise vs. imprecise probability judgments). There were no effects of

either experimental variable on location or precision, so this is an example of

pure composition shift. Thus, the model may be written as

log m1i= 1� m1ið Þð Þ ¼ b10

m2i ¼ 1=2

log f1ið Þ ¼ �d10

log f2ið Þ ¼ �d20

log g1i= 1� g1ið Þð Þ ¼ y0 þ y1Z1i þ y2Z2i;

where d20 ¼ �2;�4;�8;�12f g, Z1i ¼ �1 for the twofold partition and 1 for the

sevenfold partition, and Z2i ¼ �1 for precise and þ1 for imprecise probabilities.

MLEs for this model were obtained using the NLMIXED procedure in SAS 9.2

(SAS Institute, 2009) and the CNLR procedure in PASW Statistics 18, with sim-

ilar results. Standard errors of the estimates in SAS were obtained using the

‘‘truereg’’ option and in PASW via a bootstrap with 3,000 samples. Code and

data for this and the other examples in this paper are avalable via a webpage

at http://dl.dropbox.com/u/1857674/betareg/betareg.html. The Table 1 figures

are from the PASW output.
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The �LL column contains the negative log likelihoods for the composition

shift model and the w2ð2Þ column displays the chi-square difference between this

model and a null model without y1Z1i þ y2Z2i. This column shows that there is no

trend in the goodness-of-fit difference between the two models, suggesting that

model improvement is stable under different values of d20. The remaining col-

umns contain the parameter estimates, and these indicate converging values for

each of them as d20 decreases.

The primary differences between the Smithson–Segale analysis and ours per-

tain to the relative composition coefficients. By fixing the anchor component dis-

tribution mean at 1/2 and increasing its precision, a smaller proportion of the

sample is included in it. For instance, the proportion of participants included

in the anchor component distribution according to the Smithson–Segale results

is expð�1:218þ 0:566Þ=ð1þ expð�1:218þ 0:566ÞÞ ¼ :34 for the twofold par-

tition and .14 for the sevenfold, whereas when d20 < �8, these proportions have

declined to .25 and .07, respectively. Inspection of Figure 1 lends plausibility

to the notion that the 1/2 anchor distribution’s mass is very nearly concentrated

at 1/2 whereas the other component distribution is more dispersed, suggesting

that d20 could be smaller than the Smithson–Segale model suggests. Moreover,

the negative log likelihoods in Table 1 indicate better likelihoods for the models

with smaller d20 values.

However, further investigation into goodness of fit does not yield reasons to

prefer the alternatives to the Smithson–Segale model. Table 2 displays the

observed means and variances for the four experimental conditions and their esti-

mates from the Smithson–Segale model and models with d20 ¼ �2;�4;�8f g.
Starting with the means, none of the alternative models more closely fit the

means than the Smithson–Segale model. Comparing observed with estimated

means, the Smithson–Segale model yields a root mean squared error

ðRMSÞ ¼ 0:015, while the d20 ¼ �2 model RMS ¼ 0:020, the d20 ¼ �4 model

RMS ¼ 0:016, and the d20 ¼ �8 model RMS ¼ 0:022. Likewise, for the var-

iances, the Smithson–Segale model RMS ¼ 0:005, the d20 ¼ �2 model

RMS ¼ 0:013, the d20 ¼ �4 model RMS ¼ 0:005, and the d20 ¼ �8 model

RMS ¼ 0:010.

Turning now to the assignment of cases to component distributions, one way

to evaluate the separability of component distributions is the ratio of each com-

ponent density to the sum of the component densities at each data point. If these

ratios are close to 0 or 1, then the component distributions are well separated.

Here, we use Ri ¼ Maxðf1iðYiÞ; f2iðYiÞÞ=ðf1iðYiÞ þ f2iðYiÞÞ so that values near 1

indicate strong separation. The 10th percentile of Ri for the Smithson–Segale

model is .957 and for the the d20 ¼ �8 model it is .999, so there is relatively little

difference among the models in component separation.

We now compare the ‘‘Yes’’ and ‘‘No’’ probability judgments to determine

whether they differ in their mixture compositions. Here, we adopt a Bayesian

MCMC approach that allows more flexibility in parameterization in one respect:
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We may use an informative prior instead of fixing the precision parameter, and

we used d20 � Nðmd;s2
dÞ with s2

d ¼ 0:01 and md taking several values in the

interval �20;�8½ �. The informative prior turned out to yield much the same

effect as a fixed parameter does, so we do not discuss it any further. The models

were estimated in WinBUGS 1.4.3 (Spiegelhalter, Thomas, Best, & Lunn, 2004)

using a two-chain model, with a 5,000 iteration burn-in and estimates computed

from the subsequent 10,000 iterations. Models with d20 > �7 failed to converge.

The results reported here have d20, given a starting value of �8. The code, data,

and initial values for this model are contained in the Appendix. This model

captures the mean structure reasonably well (root mean squared error is RMS

¼ 0.014 for the ‘‘Yes’’ judgments and RMS ¼ 0.075 for the ‘‘No’’ judgments)

and the variance structure also (RMS¼ 0.005 for the ‘‘Yes’’ judgments and RMS

¼ 0.016 for the ‘‘No’’ judgments).

We focus on the composition part of the model. The composition coefficients

may be written as

log g1ki= 1� g1kið Þð Þ ¼ y0k þ y1kZ1ki þ y2kZ2ki;

TABLE 2

Observed and Estimated Means and Variances

Means Variances

Twofold Sevenfold Twofold Sevenfold

Observed 0.250 0.168 0.210 0.032 0.014 0.025

Precise 0.306 0.245 0.277 0.031 0.018 0.025

Imprecise 0.278 0.206 0.243 0.032 0.017 0.026

d20 ¼ �2 0.253 0.192 0.224 0.038 0.026 0.029

Precise 0.337 0.242 0.291 0.042 0.036 0.038

Imprecise 0.295 0.217 0.257 0.040 0.029 0.032

Smithson–Segale 0.243 0.191 0.218 0.027 0.015 0.018

Precise 0.313 0.230 0.273 0.035 0.025 0.028

Imprecise 0.278 0.210 0.245 0.031 0.018 0.022

d20 ¼ �4 0.239 0.192 0.216 0.023 0.011 0.014

Precise 0.305 0.224 0.266 0.033 0.020 0.023

Imprecise 0.272 0.207 0.241 0.027 0.014 0.017

d20 ¼ �8 0.234 0.195 0.215 0.016 0.005 0.007

Precise 0.295 0.217 0.258 0.028 0.012 0.015

Imprecise 0.264 0.206 0.236 0.020 0.007 0.009
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for k ¼ 1; 2 (1 ¼ ‘‘Yes’’ and 2 ¼ ‘‘No’’); where

yjk ¼ �j þ ðk � 1Þωj; for j ¼ 0; 1; 2:

The ωj provides the tests of whether the compositions differ when k ¼ 1 or 2.

Thus, ω0 tests whether the overall composition differs between the ‘‘Yes’’ and

‘‘No’’ probabilities, ω1 tests whether the partition priming effect differs, and

ω2 tests whether the precise versus imprecise probability elicitation effect differs.

The composition parameter estimates and 95% credible intervals are shown in

Table 3. All of the ωj estimates are close to 0 and their credible intervals contain

0, so the evidence favors the claim that the mixture compositions of the ‘‘Yes’’

and ‘‘No’’ judgments are similar. Moreover, the �j estimates closely resemble

their MLE counterparts for appropriate precision parameter runs. Finally, a sen-

sitivity analysis (not presented here) demonstrates that the informative prior

approach is quite stable under different assignments of prior means for the pre-

cision parameters, with the values of the other parameters varying less than they

do under the previous fixed-value MLE approach. Thus, we have consistent find-

ings pointing to a pure composition shift model for both the ‘‘Yes’’ and the ‘‘No’’

judgments.

Note that using extremity scores to model polarization in this example would

mislead us into thinking that probability judgments are more polarized for the

sevenfold prime, in the sense of scores being more extreme. Transforming the

(0,1) scores into extremity scores by taking their absolute difference from

0.5 reveals that the mean probability for the sevenfold prime is significantly

lower than that for the twofold prime. But of course, this effect is entirely due

to the difference in the relative sizes of the component distributions, not a shift

in the location of the distributions themselves. Earlier researchers on the topic of

partition effects on probability judgments (e.g., Fox & Rottenstreich, 2003)

interpreted similar findings to these in terms of mean differences, but Smithson

and Segale’s analysis and ours strongly suggest it is composition shift rather than

location drift.

TABLE 3

Relative Composition Parameters

Parameter M SE 2.5% 97.5%

�1 �1.895 0.184 �2.269 �1.556

ω1 0.089 0.253 �0.409 0.597

�2 �0.719 0.177 �1.084 �0.385

ω2 0.164 0.241 �0.300 0.652

�3 0.523 0.161 0.212 0.843

ω3 �0.061 0.225 �0.497 0.378
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It is instructive to compare this example with another task from the same

study. The Jakarta Stock Exchange (JSX) task (based on Fox & Clemen,

2005) has participants estimate the likelihood that the JSX will close on Friday

in one of two ranges: ‘‘less than 500’’ versus ‘‘at least 500 but less than

1,000.’’ Participants were randomly assigned to a threefold prime condition (see

below) or a sixfold prime condition:

Threefold Prime

‘‘The Jakarta Stock Index (JSX) will close on Friday in one of these ranges:

1. less than 500,

2. at least 500 but less than 1000, or

3. at least 1,000.

(What is the probability that) the JSX will close in ranges (1) or (2)?’’

Sixfold Prime

‘‘The Jakarta Stock Index (JSX) will close on Friday in one of these ranges:

1. less than 500;

2. at least 500 but less than 1,000;

3. at least 1,000 but less than 2,000;

4. at least 2,000 but less than 4,000;

5. at least 4,000 but less than 8,000; or

6. at least 8,000.

(What is the probability that) the JSX will close in ranges (1) or (2)?’’

In this task, there is no ‘‘correct’’ partition, so partitioning is arbitrary. As a

result, Smithson and Segale found no evidence that a mixture distribution was

superior to a single-distribution model. Instead, they found significant partition

priming effects on the mean (a lower mean probability under the sixfold

prime) and on precision (higher precision under the sixfold prime). The find-

ings from these two tasks amount to a preliminary test of the proposition that

when a correct partition is available, some people are unmoved by partition

priming, but otherwise the influence of partitions results in a shift of the entire

distribution.

5. Example 2: Testing a Location Drift Effect

From the Smithson and Segale data set, we combine data from two judgment

tasks, each from two independent samples. The first is the Sunday Weather task

in Example 1. The second task required participants to estimate the probability

that Boeing’s stock would rise more than those in a list of 30 companies. For both

Beta Regression Finite Mixture Models
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tasks, half of the participants were asked to provide lower and upper probability

estimates of how likely each event was to occur and how likely to not occur.

As mentioned earlier, one of the normative requirements for coherency in

lower–upper probability judgments is conjugacy in the sense that

PðAÞ ¼ 1� PðAcÞ, where PðAÞ is the lower probability of A and PðAcÞ is the

upper probability of the complement of A. A simple test of conjugacy therefore

is PðAÞ þ PðAcÞ ¼ 1, which provides a normatively specified anchor. For those

respondents whose PðAÞ þ PðAcÞ 6¼ 1, we wish to investigate predictors of the

behavior of this sum.

In this example, we model the location of PðNoÞ þ PðYesÞ
� �

=2 values

(dividing by 2 to map the sum into the [0,1] interval) in this example as a function

of the difference PðYesÞ � PðYesÞ. Note that there is no necessary relationship

between these two quantities (e.g., for conjugate lower and upper probability

assignments). However, in the Smithson–Segale data, there are a large number

of cases with simultaneously low values for PðNoÞ and PðYesÞ and cases with

simultaneously high values for these two probability judgments. As

PðYesÞ � PðYesÞ approaches 1, PðYesÞ becomes restricted to be near 1 and, con-

versely, when PðYesÞ is near 0 then PðYesÞ � PðYesÞ also must be close to 0.

Therefore, for the participants whose probability judgments are not conjugate,

their PðNoÞ þ PðYesÞ values should be positively correlated with

PðYesÞ � PðYesÞ. If so, then deviations away from conjugacy would appear to

be partly driven by imprecision in judged ‘‘Yes’’ probabilities. The scatterplot

in Figure 2 suggests that this is true. The squares in this plot are the cases obeying

the conjugacy rule, while the circles are the cases that did not. The circles display

a clear positive relationship between the two variables.

Starting with an MLE model, there is a significant effect from task (Sunday

Weather vs. Boeing Stock) on relative composition. Also, PðYesÞ � PðYesÞ does

not predict composition and neither this difference nor task predicts precision.

In the location submodel, we include main effects for both task and

PðYesÞ � PðYesÞ and their interaction. The MLE model with sensitivity analysis

may be written as follows:

log m1i= 1� m1ið Þð Þ ¼ b10 þ b11X1i þ b12Z1i þ b13Z1iX1i

m2i ¼ 1=2

log f1ið Þ ¼ �d10

log f2ið Þ ¼ �d20

log gi= 1� gið Þð Þ ¼ y0 þ y1Z1i;

where d20 ¼ �4;�8;�10;�12;�14;�16;�18f g, X1i ¼ PðYesÞ � PðYesÞ, and

Z1i ¼ �1 for the Boeing stock task and þ1 for the Sunday task. We include the

task effect on composition in a ‘‘null’’ model for comparison with the

PðYesÞ � PðYesÞ and task effects in the location submodel. MLEs for this model
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were obtained using SAS 9.2 and PASW Statistics 18 and MCMC estimates were

obtained via WinBUGS 1.4.3, with the same methods as in Example 1. The

PASW results are reported here.

Unlike Example 1, model evaluation in this instance favors the models with

greater precision (lower d20). The RMS error for the d20 ¼ �4 model is 0.147

whereas for the d20 ¼ �8 and d20 ¼ �12 models it is 0.129. The observed mean

is .433, d20 ¼ �4 model estimated mean is .517 but the d20 ¼ �8 and d20 ¼ �12

model means are .474. The chief source of misfit is in the lower half of the dis-

tribution, and there the higher-precision models also perform better. For instance,

the observed 25th percentile is .350 and the d20 ¼ �4 model estimated 25th per-

centile is .475, whereas the d20 ¼ �8 and d20 ¼ �12 models yield .437 and .440,

respectively. On the other hand, the observed median is .475 and the d20 ¼ �4

model estimated median is .507 which exceeds the observed 75th percentile of

.500, whereas the d20 ¼ �8 and d20 ¼ �12 models’ medians are .467 and

.468, respectively. Finally, the d20 ¼ �4 model’s component distributions are

not only less well separated but also less appropriate than those of the more pre-

cise models. The d20 ¼ �4 model’s mean Ri is .86, whereas the d20 ¼ �8 mod-

el’s mean Ri is .95 and the d20 ¼ �12 model’s mean Ri is .998. Moreover, the

d20 ¼ �4 model’s component distributions are not well separated for Yi > :4

FIGURE 2. Conjugacy scatterplot.
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whereas the more precise models’ distributions overlap substantially only in a

narrow interval around .5, as should be the case.

Table 4 displays the parameter estimates for several appropriate MLE

(PASW) and MCMC models (the latter used informative priors with

d20 � Nðmd; 0:01Þ, where md ¼ �8;�14;�20f g). In both kinds of model, there

is a clear tendency for estimates to stablize as d20 decreases. However, there is no

trend in the w2ð2Þ goodness-of-fit difference between the two MLE models,

suggesting that model improvement is stable under different values of d20. An

additional indication of model stability (not shown in Table 3) is the fact that

in all three MCMC models the same cases were assigned to the posterior

‘‘normative’’ component distribution (the squares in Figure 2).

The location submodel b11 parameter for the main effect of PðYesÞ � PðYesÞ
on the nonconjugate PðNoÞ þ PðYesÞ values is positive, as expected. The task

effect, b12, is negative indicating that the Sunday Weather task nonconjugate

PðNoÞ þ PðYesÞ values are lower than those for the Boeing Stock task, as would

be expected due to the finer partition in the Boeing Stock task. Finally, there is an

interaction effect indicated by the b13 estimate, so that the positive relationship

between the PðYesÞ � PðYesÞ and nonconjugate PðNoÞ þ PðYesÞ values is

stronger in the Sunday Weather task than in the Boeing Stock task. This relation-

ship would be a mere artifact if PðYesÞ and PðNoÞ were independent of

one another for nonconjugate judges, but in fact they are negatively related.

Virtually nothing is known about what drives deviations from conjugacy of

lower and upper probabilities, so this finding motivates further investigation to

ascertain its psychological relevance and importance. Such investigations are,

however, beyond the scope of this paper.

6. Example 3: A Three-Component Mixture Model

See, Fox, and Rottenstreich (2006) developed a partition-primed probability

judgment task requiring participants to assign a probability to a transaction at

a car dealership. Participants were informed that a car dealership sells two types

of cars, coupes (two-door) and sedans (three-door), and employs four salespeo-

ple. Carlos deals exclusively in coupes while the remaining three (Jennifer,

Damon, and Sebastian) deal in sedans. Participants were then told that a fictional

customer wishes to trade in his current car for one of the same type. Participants

were then asked one of two questions: ‘‘What is the probability that a customer

trades in a coupe?’’ or ‘‘What is the probability that a customer buys a car from

Carlos?’’

The first question primes a twofold partition whereas the second primes a

fourfold partition, so the hypothesis is that people will tend to anchor on 1/2 if

asked about coupes and anchor on 1/4 if asked about Carlos. In an extension

to See et al., Gurr (2009) included several individual differences measures of

cognitive style preference. He combined two such scales, Need for Closure
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(Roets & Van Hiel, 2007) and Need for Certainty (Schuurmans-Stekhoven,

2005) because they were strongly correlated and appear to tap into much the

same construct. Gurr investigated whether this combined scale (the NFCC) mod-

erated the priming effect.

One hundred and fifty-five participants (108 females; 43 males; 4 unspecified)

were recruited for the main study. These were undergraduate students at

The Australian National University, some of whom obtained course credit in

first-year Psychology for their participation in the study. Their ages ranged from

17 to 43 years (M ¼ 21.41, SD ¼ 4.46).

At first glance, this might seem to require a similar two-component mix-

ture model to Example 1. However, participants were given information

about both cars and salespeople, so it is plausible that some people might

anchor on 1/2 and others on 1/4, regardless of the priming question. There-

fore, our first comparison is between a two- and three-component mixture

model. The two-component model assumes that each anchor is used exclu-

sively in its respective priming condition, and these were modeled by uni-

form distributions of widths .002, .02, and .2. This model allows for a

second component whose location and precision parameters are free. The

model may be written as

f1iðYiÞ ¼ Uniformðm1i � d; m1i þ dÞ
m1i ¼ 1=2� Z1i=4

log m2i= 1� m2ið Þð Þ ¼ b20

log f2ið Þ ¼ �d20

log g1i= 1� g1ið Þð Þ ¼ y10 þ y11Z1i;

where d takes values :001; :01; :1f g and Z1i ¼ 0 for the Car condition and 1 for

the Salesperson condition.

The three-component model assumes that each anchor has its own component

in both conditions and allows for a third component with free location and pre-

cision parameters:

f1iðYiÞ ¼ Uniformðm1i � d; m1i þ dÞ
f2iðYiÞ ¼ Uniformðm2i � d; m2i þ dÞ

m1i ¼ 1=2

m2i ¼ 1=4

log m3i= 1� m3ið Þð Þ ¼ b30

log f3ið Þ ¼ �d30

log g1i= 1� g1i � g2ið Þð Þ ¼ y10 þ y11Z1i

log g2i= 1� g1i � g2ið Þð Þ ¼ y20 þ y21Z1i:

MLEs were obtained for the models in this example in SAS 9.2 and PASW Sta-

tistics 18, using the same methods for standard error estimates as in Example 1.
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The results reported here are for models with d¼ .01; other values of d produced

similar findings. The log likelihood chi-square difference between these two

models is large and significant (w2ð2Þ ¼ 124:350; p < :0001), so the three-

component model clearly is superior. Inspection of the three-component model

parameter estimates reveals that the y11 and y21 estimates have similar magni-

tudes (�0.744 and 0.502, respectively). This suggests a restricted model in which

y11 ¼ �y21, and it turns out that the fit for this model is almost identical to its

unrestricted counterpart (w2ð1Þ ¼ 0:148; p ¼ :700). This result demonstrates that

all of the effects pertain to a shift in relative composition between the 1/2 and 1/4

anchors. The effect of the prime on the third component is simply a by-product.

Now we incorporate the NFCC covariate into the new model, so that the com-

position submodel becomes

log g1i= 1� g1i � g2ið Þð Þ ¼ y10 þ y11Z1i þ y12Z2i þ y13Z1iZ2i;

log g2i= 1� g1i � g2ið Þð Þ ¼ y20 � y11Z1i � y12Z2i � y13Z1iZ2i;

where Z2i is NFCC transformed to a z-score variable.

This model significantly improves on the earlier one (w2ð2Þ ¼ 9:446;
p ¼ :009). Its fit also is not significantly worse than an alternative model with

separate parameters for the Z2i and Z1iZ2i terms in the second mixture component

(w2ð2Þ ¼ 3:258; p ¼ :196). We therefore adopt it as the final model.

Table 5 shows the coefficients and bootstrap 95% confidence intervals from

the PASW estimates for this model. As before, the negative y11 coefficient

indicates a shift from 1/2 to 1/4 as we move from the Car to the Salesperson con-

dition. The positive NFCC coefficient, y12, indicates that in the Car condition

there is a greater tendency for high-NFCC people to choose 1/2 but the positive

y13 coefficient tells us that this effect is eliminated in the Salesperson condition,

presumably because so many people are choosing 1/4 in that condition. We may

TABLE 5

Parameter Estimates and Confidence Intervals for Example 3

Parameter Estimates SE

Confidence Interval

Lower Upper

b30
�0.299 0.176 �0.645 0.047

d30 �0.992 0.332 �1.643 �0.341

y10 0.239 0.232 �0.216 0.693

y20 �1.007 0.243 �1.21 �0.258

y11 �0.734 0.287 �1.57 �0.444

y12 0.484 0.2 0.092 0.875

y13 �0.681 0.266 �1.202 �0.161
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infer from this result that higher-NFCC people may be more susceptible to

partition priming.

At the mean of NFCC, the model estimates of the proportions of respondents

in the Car condition belonging in the 1/2-anchor, 1/4-anchor, and third compo-

nent distributions are .480, .162, and .359, respectively, whereas the observed

proportions are .481, .182, and .337. In the Salesperson condition, the model esti-

mates are .259, .323, and .418 whereas the observed proportions are .260, .338,

and .402. Thus, the model slightly underestimates the proportions for the 1/4-

anchor components. However, it recovers the differences between proportions

reasonably well. The observed composition shifts between the Car and Salesper-

son conditions are .481 – .260 ¼ .221 and .182 – .338 ¼ –.156, while the model

estimates are .480 – .259 ¼ .221 and .162 – .323 ¼ –.161. Figure 3 displays the

raw residuals plotted against predicted values. The model slightly underestimates

the .5 and overestimates the .25 responses, but this is to be expected, given the

component distributions. Seven outliers in the Salesperson condition and three

in the Car condition skew the residuals somewhat. Nevertheless, both the

FIGURE 3. Predicted values versus residuals.
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root-mean and root-median squared residuals suggest that the model fits the Car

condition (root-mean squared residual ¼ .161, root-median squared residual ¼
.092) somewhat better than the Salesperson condition (root-mean squared

residual ¼ .197, root-median squared residual ¼ .133).

7. Conclusions

Although the examples of the mixture models discussed in this paper were

confined to studies of judged probabilities, these models can be applied to a

great variety of problems that currently lack appropriate methods. As

observed in Verkuilen and Smithson (in press), doubly bounded psychologi-

cal variables are quite common, including not only response scales such as

sliders and visual analog scales but also derived measures such as the propor-

tion of alloted time devoted to one task, or proportion of a credit card debt

repaid in a given month. Mixture models may be extended to multilevel

(mixed) mixture models (see Verkuilen & Smithson, in press, for a general

characterization of multilevel models for beta-distributed dependent vari-

ables). Moreover, it is straightforward to extend these models to hierarchical

modeling setups such as case-control comparisons on tests with binary items,

via beta-binomial mixture models that account for overdispersion in both

cases and controls.

These models can enhance the potential for theory testing and development in

areas that concern the polarization or extremity of judgments or attitudes,

priming, and anchoring effects. The potential benefits are threefold. First, the

availability of appropriate distribution theory for handling the ‘‘problems’’ of

skew, censoring, heteroscedasticity, and bimodality that characterize polariza-

tion and extremity enables these to be studied and modeled for the meaningful

phenomena that they are. We note here that models that permit censoring

(e.g., Tobit models) may be preferable when the bounds on the dependent

variable’s scale are arbitrary.

Second, the models presented here render theoretical terms more precise and

operationally direct. For instance, the fact that relative composition and overlap

(due to influences on first and/or second moments) can be modeled separately

distinguishes among three kinds of polarization phenomena that heretofore have

been ignored and/or conflated, and this should lead to more sophisticated theories

of polarization, priming effects, and the like. Finally, the greater specificity in

these models regarding types of anchors and polarization enhances the testability

of theories about these phenomena by motivating or even requiring more specific

(i.e., ‘‘bolder’’ in the Popperian sense) models and hypotheses. For example,

the distinction between normatively specified anchors and nonnormative anchors

provides a clue to and partial explanation for the existence of two distinct

kinds of partition effects in probability judgments, as well as having clear

implications for future research on this topic.
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Appendix: Example 2 WinBUGS Code, Data and Initial Values

# The dependent variable is y
# x1 is the task (-1 for Boeing and 1 for Sunday)
# x2 is the difference between upper and lower P(Yes)
model
f
for(i in 1: N) f
y[i] * dbeta(omega[i], tau[i])
# We reparameterize the beta distribution
omega[i] <- mu[i]*phi[i]
tau[i] <- (1-mu[i])*phi[i]
# This is the location submodel
mu[i] <- exp(lambda[i])/(1þexp(lambda[i]))
lambda[i] <- (1-K[i])*(beta1 þ beta2*x2[i] þ beta3*x1[i] þ

beta4*x1[i]*x2[i])
# This is the dispersion submodel
phi[i] <- exp(-kappa[T[i]])
# This is the composition submodel
K[i] * dbern(P[i])
T[i] <- K[i] þ 1
P[i] <- exp(m[i])/(1þexp(m[i]))
m[i] <- theta1 þ theta2*x1[i]
g
beta1 * dnorm(0.0, 1.0E-6)
beta2 * dnorm(0.0, 1.0E-6)
beta3 * dnorm(0.0, 1.0E-6)
beta4 * dnorm(0.0, 1.0E-6)
theta1 * dnorm(0.0, 1.0E-6)
theta2 * dnorm(0.0, 1.0E-6)
kappa[2] * dnorm(-8.0,10.0)
kappa[1] * dnorm(0.0, 1.0E-6)
g
# Data
list(N ¼ 242, y ¼ c(0.5, 0.5498550725, 0.5, 0.5, 0.30057971, 0.5,

0.200869565,
0.15101449249999999, 0.3504347825, 0.5, 0.5, 0.1011594205,

0.45014492749999996,
0.45014492749999996, 0.400289855, 0.15101449249999999, 0.5,

0.200869565,
0.4750724635, 0.5498550725, 0.5, 0.5, 0.6495652175, 0.5,

0.2507246375,
0.400289855, 0.30057971, 0.5, 0.4501449275, 0.40028985499999997,

0.5,
0.40028985499999997, 0.5, 0.3504347825, 0.30057970999999994,

0.400289855, 0.5,
0.141043478, 0.5, 0.5, 0.30057971, 0.076231884, 0.475072464, 0.5,
0.40028985499999997, 0.1260869565, 0.5, 0.380347826, 0.5,

0.400289855, 0.5, 0.5,
0.40028985499999997, 0.4501449275, 0.5, 0.3504347825,
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0.5249275365, 0.599710145,
0.5, 0.30057971, 0.5, 0.5, 0.6495652175, 0.151014493, 0.400289855,

0.5498550725,
0.3504347825, 0.5, 0.5, 0.5, 0.5, 0.5, 0.016405797, 0.375362319, 0.5,

0.5, 0.5,
0.30057971, 0.5, 0.5498550725, 0.30057971, 0.5, 0.3504347825, 0.5,

0.5498550725,
0.2507246375, 0.5, 0.4501449275, 0.5498550725, 0.749275362,

0.7492753624999999,
0.5, 0.5, 0.3504347825, 0.5, 0.5, 0.30057971, 0.4501449275, 0.5,

0.2507246375,
0.40028985499999997, 0.5, 0.2257971015, 0.175942029, 0.5747826085,

0.5, 0.5,
0.35043478250000004, 0.475072464, 0.69942029, 0.5, 0.195884058,

0.400289855,
0.5, 0.5348985505, 0.375362319, 0.5, 0.5, 0.2507246375,

0.4501449275,
0.45014492749999996, 0.3504347825, 0.200869565, 0.5, 0.30057971,

0.30057971,
0.40028985499999997, 0.45014492749999996, 0.5, 0.5, 0.5, 0.5, 0.5,

0.4501449275,
0.35043478250000004, 0.5, 0.30057971, 0.40028985499999997, 0.5,

0.5, 0.30057971,
0.5, 0.15101449249999999, 0.400289855, 0.5, 0.5, 0.5, 0.3005797105,

0.5,
0.45014492749999996, 0.5, 0.3504347825, 0.30057971, 0.5,

0.3255072465, 0.5,
0.0662608695, 0.40028985499999997, 0.5, 0.45014492749999996,

0.9287536235,
0.4501449275, 0.30057971, 0.4501449275, 0.5, 0.5, 0.141043478, 0.5,

0.5, 0.5,
0.2507246375, 0.325, 0.5, 0.25, 0.275, 0.45, 0.3, 0.275, 0.5, 0.45,

0.425,
0.325, 0.25, 0.5, 0.225, 0.55, 0.5, 0.35, 0.45, 0.425, 0.45, 0.45,

0.475, 0.5,
0.475, 0.475, 0.45, 0.525, 0.3, 0.5, 0.4, 0.5, 0.575, 0.45, 0.525,

0.475, 0.5,
0.525, 0.5, 0.5, 0.5, 0.525, 0.35, 0.35, 0.475, 0.475, 0.55, 0.45, 0.4,

0.475,
0.325, 0.35, 0.5, 0.525, 0.425, 0.5, 0.5, 0.6, 0.525, 0.45, 0.575, 0.6,

0.475,
0.475, 0.575, 0.625, 0.525, 0.225, 0.5, 0.5, 0.1, 0.625),
x1 ¼ c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1,

Beta Regression Finite Mixture Models

827

 at Australian National University on December 1, 2011http://jebs.aera.netDownloaded from 

http://jebs.aera.net


-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,

-1, -1, -1, -1),
x2 ¼ c(0.049855072, 0.19942029, 0.0, 0.0, 0.19942029,

0.19942028999999994,
0.0, 0.099710145, 0.099710145, 0.099710145, 0.0, 0.099710145,

0.099710145,
0.099710145, 0.19942029, 0.099710145, 0.049855072, 0.0,

0.049855072,
0.099710145, 0.39884057999999994, 0.39884058,

0.19942028999999994, 0.79768116,
0.29913043500000003, 0.29913043500000003, 0.29913043500000003,

0.0, 0.19942029,
0.39884058, 0.099710145, 0.19942028999999994, 0.5982608700000001,

0.099710145,
0.09971014399999995, 0.149565217, 0.099710145, 0.0, 0.099710145,

0.19942029,
0.19942029, 0.049855072, 0.049855072, 0.139594203,

0.19942028999999994,
0.049855073, 0.498550725, 0.039884058, 0.498550725, 0.19942029,

0.0,
0.39884057999999994, 0.19942028999999994, 0.0,

0.09971014399999995, 0.19942029,
0.049855073, 0.59826087, 0.39884057999999994, 0.099710145,

0.19942028999999994,
0.19942028999999994, 0.19942028999999994, 0.149565218,

0.19942029,
0.5982608700000001, 0.39884057999999994, 0.498550724,

0.149565217, 0.149565217,
0.19942029000000003, 0.099710145, 0.009971014, 0.049855073,

0.19942029,
0.97715942, 0.099710145, 0.099710145, 0.79768116,

0.19942028999999994,
0.19942029000000003, 0.099710145, 0.29913043500000003,

0.19942028999999994,
0.09971014499999997, 0.099710145, 0.39884057999999994,

0.39884058,
0.19942028999999994, 0.498550724, 0.79768116, 0.099710145,

0.099710145,
0.19942028999999994, 0.19942029, 0.19942029, 0.29913043500000003,
0.19942029000000003, 0.149565218, 0.099710145, 0.498550725,

0.079768116,
0.34898550700000003, 0.049855072, 0.179478261, 0.79768116,

0.5982608700000001,
0.24927536200000003, 0.049855073, 0.59826087, 0.19942029,

0.08973913,
0.19942029000000003, 0.149565218, 0.20939130400000003,

0.249275363, 0.049855073,
0.009971015, 0.19942029, 0.099710145, 0.099710145,
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0.6979710149999999,

0.099710145, 0.7179130439999999, 0.19942029000000003,
0.099710145, 0.099710145,

0.39884057999999994, 0.29913043500000003, 0.19942029, 0.99710145,
0.099710145,

0.19942029, 0.29913043500000003, 0.19942029, 0.079768116,
0.19942029,

0.19942028999999994, 0.19942028999999994, 0.099710145,
0.14956521700000003,

0.0, 0.099710145, 0.19942029, 0.099710145, 0.169507246, 0.0,
0.14956521800000003,

0.079768116, 0.099710145, 0.099710145, 0.19942029, 0.099710145,
0.009971015,

0.14956521800000003, 0.099710145, 0.129623189, 0.099710145,
0.099710145,

0.099710145, 0.857507247, 0.099710145, 0.39884058,
0.19942028999999994,

0.19942029, 0.049855073, 0.0, 0.099710145, 0.099710145,
0.009971015, 0.099710145,

0.4, 0.4, 0.45, 0.4, 0.7, 0.3, 0.35, 0.35, 0.6, 0.55, 0.3, 0.3, 0.9,
0.1, 0.4,

0.8, 0.4, 0.7, 0.75, 0.7, 0.45, 0.6, 0.5, 0.19, 0.55, 0.7, 0.55, 0.4,
0.55, 0.5,

0.6, 0.65, 0.55, 0.55, 0.29, 0.5, 0.65, 0.1, 0.3, 0.7, 0.35, 0.5, 0.55,
0.6,

0.55, 0.45, 0.2, 0.55, 0.25, 0.55, 0.6, 0.05, 0.6, 0.15, 0.4, 0.05,
0.4, 0.35,

0.55, 0.55, 0.5, 0.2, 0.2, 0.4, 0.6, 0.15, 0.24, 0.04, 0.14, 0.15,
0.4))

#Initial values for one chain

list(kappa ¼ c(-2.0, -8.0), beta1 ¼ -0.5, beta2 ¼ 0.1, beta3 ¼ -0.1,
beta4 ¼ 0.3, theta1 ¼ 0.4, theta2 ¼ 0.1, K ¼ c(0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 1, 0, 1))
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