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Uncorrectable skew and heteroscedasticity are among the “lemons” of psychological data, yet
many important variables naturally exhibit these properties. For scales with a lower and upper
bound, a suitable candidate for models is the beta distribution, which is very flexible and
models skew quite well. The authors present maximum-likelihood regression models assum-
ing that the dependent variable is conditionally beta distributed rather than Gaussian. The
approach models both means (location) and variances (dispersion) with their own distinct sets
of predictors (continuous and/or categorical), thereby modeling heteroscedasticity. The
location submodel link function is the logit and thereby analogous to logistic regression,
whereas the dispersion submodel is log linear. Real examples show that these models handle
the independent observations case readily. The article discusses comparisons between beta
regression and alternative techniques, model selection and interpretation, practical estimation,
and software.

Keywords: beta distribution, regression, variance, generalized linear model, heteroscedasticity

The normal-theory regression model is, unarguably, the
workhorse of applied statistics, and it is broadly applicable
to many problems in practice. Simply put, normally distrib-
uted errors turn out to be a pretty good assumption in many
situations. However, this is not universally true, and in some

areas of research violations of normality are common. Nu-
merous devices have been invented to render data suitable
for this approach in the face of assumption violations. Even
so, there are circumstances in which these remedial mea-
sures cannot help or are undesirable for substantive or
theoretical reasons. Uncorrectable skew, heteroscedasticity,
and multimodality of the dependent variable are among the
most common difficulties. Although many psychological
researchers commonly believe that normal-theory regres-
sion (or equivalent models, such as analysis of variance
[ANOVA]) is robust against violations of assumptions—
which indeed it is in many circumstances—this view often
is mistaken and can lead to misinterpretations of data and
theoretical impasses. It is particularly true given commonly
used measures such as survey responses with bounded re-
sponse sets or proportions.

The following example highlights the ways in which
conventional regression can yield misleading results. The
data were supplied by K. Pammer in the School of Psychol-
ogy at The Australian National University (Pammer &
Kevan, 2004). We consider the relative contribution of
nonverbal IQ and dyslexic versus nondyslexic status to the
distribution of 44 children’s scores on a test of reading
accuracy. The reading score distributions for the two groups
of children are shown in Figure 1. These scores have been
linearly transformed from their original scale to the open
unit interval (0, 1) by first taking y� � (y – a)/(b – a), where
b is the highest possible score on the test and a is the
smallest possible score, and then compressing the range to
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avoid zeros and ones by taking y� � [y�(N – 1) � 1/2]/N,
where N is the sample size (the rationale for these rescalings
is presented in the first part of the next section and is further
detailed in materials referred to in Footnote 2).

The nondyslexic readers’ mean accuracy score is .899,
whereas the mean for readers who have dyslexia is .606.
The third plot in Figure 1 shows the residuals for a linear
regression model, including the group, IQ, and an interac-
tion term for IQ by group. The plot clearly suggests there is
heterogeneity of variance, and Levene’s test concurs with

this assessment, F(1, 42) � 12.434, p � .001. Moreover, the
usual regression approach does not permit us to model this
difference in dispersion between the groups. More impor-
tant, even when accuracy scores are transformed using the
logit, a linear regression model using standardized IQ
scores, effects-coded dyslexia status, and an interaction
term produces a significant main effect for dyslexia status
(p � .0001), a nonsignificant main effect for IQ (p � .12),
and a marginally nonsignificant interaction effect (p � .07).
The impression is that IQ makes little or no discernible

Figure 1. Reading accuracy scores for dyslexics and controls and ordinary least squares residuals.
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independent contribution. As will be shown in our third
example, this impression is misleading because these re-
gression models confound effects of covariates on means
with effects on variances.

Skew and heteroscedasticity are also theoretically and
substantively important in their own right. Although loca-
tion (mean) shifts are routinely considered “the” measure of
effect, it is also possible that a causal factor manifests
primarily through variation and therefore heteroscedasticity.
For instance, gender differences in variability on ability and
achievement tests have long been noted, with males usually
showing greater variability on tests of numerical and spatial
abilities but no variability differences in tests tapping verbal
abilities (Feingold, 1992; Maccoby & Jacklin, 1974). As
Willingham and Cole (1997, pp. 51–52) observed, these
differences in variability exaggerate a male advantage in the
upper tail and a male disadvantage in the lower tail. They
also point out that gender differences in variability may be
just as important as differences in means.

Furthermore, in a bounded response scale location, vari-
ation and skew are not so neatly separated as they are in the
unbounded scale of the normal distribution, so a location
shift might well imply skew, for instance in the presence of
an active floor or ceiling. The theoretical relevance of skew-
ness and dispersion arises in many domains in psychology.
The dyslexia example is a case in point, as are many
case-control studies in clinical psychology. Typically, one
or the other population is strongly skewed on the variable of
interest, and the variability of scores is of both theoretical
and practical interest. For example, Louis, Mavor, and Terry
(2003) critiqued methodological practice in social psychol-
ogy on these grounds. Among other points, they argued that
variables measuring degree of adherence to social norms
often are strongly skewed, and normal-theory regression
models consistently underestimate the contribution of those
variables to predictive models of behavior and attitudes
even when “appropriately” transformed. The upshot is that
norms are passed over in favor of individual differences as
explanatory variables.

We present a maximum-likelihood regression technique
based on the beta distribution. The beta distribution is a very
flexible two-parameter family that can accommodate skew,
a form of bimodality, and symmetry not unlike a normal
distribution. Conditionally, that is, in a regression model,
the beta distribution can accommodate even more shapes.
Its main assumptions are that the dependent variable may be
regarded as continuous, interval-level, and bounded be-
tween two known endpoints. Many kinds of data in the
social sciences are reasonably assumed to have these prop-
erties—indeed, assuming normality carries with it continu-
ity and interval-level measurement, so this assumption is
already implicit in most analyses. However, many scales
and questionnaire items are bounded in nature, whereas the
domain of the normal distribution (i.e., the range of values
for which its density is defined) is unbounded. The domain

for the beta distribution, by contrast, is bounded, and our
regression models for it naturally respect these bounds,
which may be of theoretical importance. The beta regression
model is also especially useful for proportions. Regression
models for proportions are frequently difficult, particularly
when the values are centered near one of the boundaries of
the unit interval.

Though not commonly used by psychologists, there are
remedial measures for heteroscedasticity in the context of
the normal-theory regression, such as the Huber–White
heteroscedasticity-consistent covariance estimator, com-
monly referred to as the sandwich estimator, or the many
computationally intensive robust regression techniques de-
veloped over the last three decades (Long & Ervin, 2000;
Stautde & Sheather, 1990; Wilcox, 2005).1 Substantive
approaches such as maximum-likelihood models for normal
regression with multiplicative dispersion covariates
(Greene, 2000, pp. 517–521) or the random slopes model in
multilevel analysis (Snijders & Bosker, 1999) attempt to
model the heteroscedasticity explicitly. Like the latter two
methods, the beta regression approach presented here is
more than just a remedy. It permits researchers to model
dispersion explicitly and naturally, particularly for bounded
variables displaying skew. Theories and hypotheses con-
cerning dispersion and heteroscedasticity can be tested
directly.

There is a small literature on beta regression, all focusing
exclusively on the beta as a model for proportions. Usually
the beta distribution is used for other purposes, most com-
monly in modeling univariate distributions for a variety of
phenomena and as a conjugate prior for proportions in
Bayesian models. It is instructive that in the otherwise
exhaustive Handbook of Beta Distributions, there is no
mention of beta regression (Gupta & Nadarajah, 2004)
despite the fact that the beta function itself dates back to
Newton and the beta distribution has been used extensively
in statistics for more than a century. We also draw readers’
attention to the fact that there is a sizable parallel literature
on beta-binomial regression (an early instance is Crowder,
1978), suited to modeling proportions of counts, where the
beta distribution is used as a hierarchically specified random
effect.

The first three examples of beta regression come out of
the literature on organizational economics and public man-
agement. Brehm and Gates (1993) modeled police compli-

1 It should be noted that it is possible—and indeed often desir-
able—to use the sandwich estimator with nonlinear and general-
ized linear models, particularly when misspecification is suspected
but there is no obvious remedy for it, for example, when there
seems to be unobserved heterogeneity among the participants but
no variable exists with which to model it. However, efficiency is
lost when it is used, and it is conservatively biased in small
samples, sometimes substantially so. See Hardin and Hilbe (2003),
especially pp. 28–32, and references therein.
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ance with supervision and used the standard parameteriza-
tion of the beta distribution, which has two shape
parameters. Unfortunately, the standard parameterization
complicates the formulation of a regression model and
makes interpretation difficult. Paolino (2001) used the same
mean-dispersion parameterization that we adopt in this ar-
ticle, which greatly simplifies interpretation. Buckley
(2002) implemented a simple Bayesian version of Paolino’s
model and estimated it via Markov-chain Monte-Carlo
(MCMC) procedures. Apparently independent of these au-
thors, Ferrari and Cribari-Neto (2004) derived a similar beta
regression model using Fisher scoring, which recently has
been implemented in the SAS GLIMMIX procedure (SAS
Institute, 2005). However, they did not model the dispersion
but instead treated it solely as a nuisance parameter. This is,
in our view, a major oversight, as the ability to model
dispersion can be shown to be very useful. Again, seemingly
independently of the aforementioned work, Kieschnick and
McCullogh (2003) compared the performance of a beta
regression model for proportions, as used in economics and
finance research, with several alternatives and concluded
that it is often the best option. They also mentioned that the
econometrics package SHAZAM (Version 7) contains a
model using the identity link with a beta-distributed depen-
dent variable. For reasons that will become apparent, those
authors do not favor that approach and neither do we.

The beta regression is directly related to an extended
generalized linear models framework for joint modeling of
means and dispersions described in chapter 10 of McCul-
lagh and Nelder (1989). Smyth (1989) developed this
framework for random variables in the exponential family
of distributions. The beta distribution forms a two-parame-
ter exponential family, so the framework is easily adapted to
it, and most of the machinery in beta regression models will
be familiar to researchers accustomed to the generalized
linear models, particularly logistic regression and log-linear
models. Researchers not familiar with the generalized linear
model should consult references such as Liao (1994), Long
(1997), or Powers and Xie (2000) for introductions. Fahr-
meir and Tutz (2001) or McCullagh and Nelder (1989) are
more advanced texts providing important technical results.

The beta regression technique is readily implemented in
standard statistical packages. Given a general program for
maximum-likelihood estimation or nonlinear regression,
programming a beta regression is straightforward. We have
successfully implemented the model in SAS, Splus/R,
SPSS, and Mathematica.2 Other authors have implemented
beta regression models in Gauss (Paolino, 2001), Stata (Buck-
ley, 2002), R (Ferrari and Cribari-Neto’s location-only
model in a package by de Bustamante Simas in 2004), SAS
(Ferrari and Cribari-Neto’s [2004] model in the GLIMMIX
procedure, which can also handle random effects via penal-
ized quasi-likelihood estimation), and WinBUGs (Buckley,
2002).

In the following sections, we set out the basic model and
fundamental equations. Then we deal with inference, good-
ness of fit, model selection, and diagnostics. Model inter-
pretation is elaborated in conjunction with examples. Fi-
nally, we offer some comparisons between beta regression
and reasonable alternatives along with criteria for deciding
among them, and we note possible extensions and general-
izations of beta regression. Practical issues regarding max-
imum-likelihood estimation and implementations in various
statistical packages are discussed in the supplementary ma-
terial referred to in Footnote 2.

Beta Regression Model and
Maximum-Likelihood Estimation

Let Y be the dependent variable of interest and i � 1, . . . ,
N, index the cases. Assume Yi has a beta distribution with
parameters � and �, that is,

f� y; �, �� �
��� � ��

��������
y�	1�1 � y��	1, (1)

where y � (0, 1), �,� 
 0, and �( � ) denotes the gamma
function. Both � and � are shape parameters, with � pulling
density toward 0 and � pulling density toward 1. The beta
family includes a broad variety of distribution shapes. Two
noteworthy cases are Beta(1, 1), which is equivalent to the
uniform distribution over the unit interval, and the limit as
�, �3 0, which is a Bernoulli(p), with p determined by the
relative rate of convergence �, � to 0. Figure 2 displays
several examples; we encourage readers to plot others. The
beta distribution reflects around .5 in the sense that f(y;
�,�) � f(1 – y; �,�), so that reverse scoring beta random
variables does not change estimates in a meaningful way. It
has a mode only if both � and � are greater than 1, located
at (� – 1)/(� � � – 2). Further details about the beta
distribution may be found in Gupta and Nadarajah (2004) or
Johnson, Kotz, and Balakrishnan (1995). Weisstein (2005)
is a particularly convenient resource, and Wolfram Research
(2005) has a number of interactive demos.

Provided one is willing to assume the interval level of
measurement, it is possible to transform any bounded scale
in [a, b] with known bounds into the unit interval without
loss of generality using the transformation y� � (y – a)/(b –
a). In practice, this transformation usually needs to be
modified slightly to avoid zeros and ones in the data (this
issue is discussed in the supplementary material referred to
in Footnote 2). We stress here that the bounds a and b refer
to known theoretical minimum and maximum values on a

2 Code to replicate the examples and graphics in this article can
be downloaded from http://www.anu.edu.au/psychology/people/
smithson/details/Index.html. A Readme file discusses practical es-
timation issues and tips. These materials also are accessible at
http://dx.doi.org/10.1037/1082-989X.11.1.54.supp.
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scale, regardless of the smallest and largest values observed
in data. The beta distribution defined over the unit interval
sometimes is known as the standard beta to distinguish it
from beta distributions defined over intervals with other
bounds. We deal only with the standard beta in this article,
and we also leave aside the problem of estimating scale
endpoints (see Johnson et al., 1995, p. 221, for the standard
approach to this problem in the univariate setting).

The usual (i.e., degrees of freedom) parameterization of
the beta distribution is inconvenient for regression because
� and � are both shape parameters, usually interpreted as
prior sample sizes in Bayesian analysis of proportions
(Pham-Gia, 1994). Unfortunately, shape parameters are dif-
ficult to interpret in terms of conditional expectations. The
following reparameterization translates � and � into loca-
tion and dispersion parameters. It is well-known that

E�Y� �
�

� � �

and

Var�Y� �
��

�� � ��2�� � � � 1�
.

Let � � E(Y) and �2 � Var(Y). Simple algebra yields

�2 �
��1 � ��

�� � � � 1�
.

Now, let � � � � �. Then we have

� � �� (2)

and

� � � � ��. (3)

The reparameterization results in a location parameter � and
a “precision” parameter �—because Equations 2 and 3
imply �2 � �(1 – �)/(� � 1), so the variance increases as
� decreases.

The variance is therefore a function of both the mean and
the parameter �. Because we propose modeling � and �
separately, it is essential to bear in mind that although �
influences precision (and therefore dispersion), it is not the
sole determinant of dispersion. A natural feature of a
bounded random variable is that dispersion depends partly
on location. However, note that � and � place no restric-
tions on each other, so they can be modeled separately.

The variance also must have an upper bound. As is
readily seen from the formula

�2 �
��1 � ��

�1 � ��
�

��

�� � ��2�� � � � 1�
,

�2 � 1/4. The limit is approached when � � 1/2 as �
approaches 0. It is also the case that �2 
 1/12 when � and
� both are � 1, and �2 � 1/12 when � and � both are 
 1.

We use maximum-likelihood to estimate � and �, or
equivalently � and �. Because the beta forms an exponen-
tial family, it also satisfies certain useful regularity condi-
tions that help ensure maximum-likelihood estimates exist
and are well-defined. For a technical discussion of the
particular conditions required to ensure asymptotic proper-
ties of the maximum-likelihood estimators in generalized
linear models, readers may consult Fahrmeier and Tutz
(2001) and references therein, but it seems that beta regres-
sion generally satisfies these conditions. The log-likelihood
for the ith observation yi is

ln L��,�; yi� � ln ��� � �� � ln ���� � ln ����

� �� � 1� ln�yi� � �� � 1� ln�1 � yi�. (4)

The maximum-likelihood estimators are found in the usual
way by maximizing the sum of the log-likelihoods over the
observations. In general, this must be done numerically. It
should be borne in mind that maximum-likelihood estimates
are not necessarily unbiased, and the degree of bias will be
greater for small samples (see Cribari-Neto & Vasconcellos,
2002, for an exploration of bias in such models).

To form a regression model in the extended generalized
linear model (GLM) approach, we use two link functions,
one for the location parameter � and the other for the
precision parameter �. The link function is a nonlinear,
smooth, monotonic function that maps the unbounded space
of the linear predictor into the proper sample space of the
observations, thereby “linking” the linear predictor with the
observations. Let X and W be matrices of covariates (pos-
sibly overlapping or even identical), with xi or wi being the
ith row vector from these matrices, and let 	 and 
 be
column vectors of coefficients. The GLM for the location
parameter is the usual

Figure 2. Beta densities.
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f��i� � xi	,

where f is a monotonic, differentiable link function. The
general form of the relationship between the means and
variances is

�i
2 � v��i�u��i�,

where v and u are nonnegative functions. The precision
parameter �i is assumed to be modeled by

h��i� � wi
,

where h is another link function. Following Smyth’s (1989)
terminology, we refer to the likelihood function of � when

 is held constant as defining the location submodel. Like-
wise, the likelihood function of � when 	 is held constant
defines the dispersion submodel.

For a beta-distributed dependent variable, the mean must
lie in the open unit interval, so a link function that
“squeezes” the real line into the unit interval is necessary.
The logit link does this:

ln [�i/�1 � �i�] � xi	,

because the logit, or log-odds, transformation ln [�/(1 	 �)]
maps a number � � (0, 1) onto the real line. The logit is the
quantile function of the standard logistic distribution, which
is why logistic regression—which also uses the logit link—
has its name. Beta regression is, in a sense, a generalization
of logistic regression when the dependent variable is a
proportion. The logit link is desirable from an interpretation
standpoint because the resulting regression coefficients can
be interpreted as log-odds. Cox (1996) considered various
link functions for regression models of continuous propor-
tions in a quasi-likelihood framework and found that the
logit performed well.

In this article we restrict attention to the logit link, but
other link functions can be used. Any link function whose
domain is the unit interval (e.g., an inverse cumulative
distribution function) is possible. The probit, cauchit, and
complementary log-log links are common examples. The
probit link, �	1(�), rescales the coefficients in terms of the
standard normal distribution, which may be preferred to
log-odds by users more familiar with effect size measures
such as Cohen’s d. Up to rescaling, estimates will be nearly
identical to logit, but the probit link is more susceptible to
changes in the tails. The cauchit link, tan[�(� – .5)], the
inverse cumulative distribution function (CDF) of the stan-
dard Cauchy distribution, is very useful if outliers in the
space of the linear predictor, that is, high leverage points,
are suspected. The Cauchy distribution is very heavy tailed
and makes less extreme predictions for the expected value
of the dependent variable than the probit or logit for large
values of the linear predictor. The complementary log-log
link, ln [–ln (1 – �)] is asymmetric and is useful in certain

applications; it scales the coefficients in terms of the hazard
function rather than the log-odds. In the absence of theo-
retical considerations, a link function is chosen to provide a
simple relationship between the covariates and the depen-
dent variable. Collett (2003) provided extensive discussion
of link functions for binary data, most of which extends
naturally to beta regression.3 The identity link, as used by
Shazam 7, is generally not preferred for bounded variables
because it makes out-of-bounds predictions and does not
incorporate the general notion of diminishing returns for
observations near the bounds.

The precision parameter � must be strictly positive
because a variance cannot be negative. The log link has
this property:

ln��i� � 	wi
.

We use the negative sign to make the interpretation of the
coefficients 
 easier. Because � is a precision parameter,
a positive-signed 
j indicates smaller variance, which is
potentially confusing. It seems more natural to model
dispersion rather than precision, and the negative sign
enables us to do so. This is the difference between our
parameterization and those in the literature on beta re-
gression cited so far. Unlike the location submodel, there
does not seem to be any other obviously useful link for
the dispersion.

Inverting the link functions to give predicted values, the
location submodel may be written as

�i �
exp(xi	)

1 � exp(xi	)
, (5)

and the dispersion submodel is

�i � exp(	wi
). (6)

Note that we have incorporated the intercepts for both
models into the coefficient vectors. We shall adopt the
convention here that the first elements in X and W are x0i �
w0i � 1, and the first elements in 	 and 
 are 	0 and 
0, the
submodel intercepts. The reparameterized log-likelihood
kernel for the regressors is

3 One further possibility that we mention is to use a generalized
link function. The idea is to treat the link function as a nuisance
parameter and then estimate it rather than fixing it a priori. For
instance, the Aranda–Ordaz class embeds the complementary log-
log and logit links in a one-parameter family. It is then possible to
estimate this parameter along with the rest of the model. The
analogy to Box–Cox transformations is obvious, and this strategy
shares many of the flaws, in particular the potential for capitali-
zation on chance and a drastic loss of efficiency. See Collett (2003)
for a discussion and citations to the original literature.
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ln L(	,
; yi,X,W) � ln�[(eX		W
 � e	W
)/(1 � eX	)]

	ln �[eX		W
/(1 � eX	)] � ln�[e	W
/(1 � eX	)]

� [eX		W
/(1 � eX	) � 1] ln(y)

� [e	W
/(1 � eX	) � 1] ln (1 � y).

The score function (gradient of the likelihood) and the
Hessian (matrix of second partials) can be obtained explic-
itly in terms of the polygamma function, so asymptotic
standard-error estimates can also be computed numerically.

Inference, Goodness of Fit, and Diagnostics

As mentioned earlier, because the estimation is by max-
imum-likelihood, the usual inferential machinery of Wald
statistics, likelihood ratio tests, and Lagrange multiplier
(score) tests is available. We also recommend resampling or
permutation as methods that do not make assumptions about
asymptotic properties of the model. At present the small
sample properties of beta regression are generally unknown.
Parameter estimates are consistent but not unbiased, and in
small samples the influence of bias is strongest (of course).
A few hundred observations seem to be sufficient for prac-
tical infinity, and we have fit reasonable examples with
sample sizes as small as 10, but further studies are obviously
necessary to quantify the amount of bias. Model comparison
can be done via the likelihood ratio test, using twice the
difference between the log-likelihoods of a full model and a
restricted model whose covariates are a subset of the full
one. Information criteria such as Akaike’s information cri-
terion (AIC) or the Bayesian information criterion (BIC)
also can be used for this purpose. Both quantities are pe-
nalized chi-square values, with the penalties defined by the
number of model parameters, k, and, in the case of the BIC,
the number of observations, N. The AIC is commonly
defined as

AIC � � 2 ln Lfit � 2k.

AIC has the well-known flaw of being dependent on sample
size; it tends to capitalize on chance and thus favor more
complex models when the sample size is large. For this
reason, many prefer the BIC. There are a number of ways to
define this statistic, but we use

BIC � � 2 ln Lfit � 2k ln N

in the examples below. In general, the BIC tends to favor
simpler models than AIC or the likelihood ratio test when N
is large because the change in likelihood for the addition of
an additional parameter needs to be large enough to over-
come the penalty of ln N, which grows as the sample size
does. (One should not rely overly much on any of these
criteria, however.)

To assess the global goodness of fit of the model, it would

be useful to have an analog to multiple-R2 in normal-theory
ordinary least squares (OLS) regression. Ferrari and Cribari-
Neto (2004) considered the correlation between observed
and predicted values as a basis for a measure of goodness of
fit. However, this statistic does not take into account the
effect of dispersion covariates, and thus its utility is limited.
More broadly, generalizing the R2 to contexts beyond the
linear model has not proven to be an easy task. Conceptually
different approaches that lead to the same thing in the
normal theory do not lead to the same thing outside it. This
issue is reviewed thoroughly in Long (1997) in the context
of the generalized linear model, and we recommend the
discussion therein.

A simple candidate is a proportional reduction of error
(PRE) statistic based on log-likelihoods, which is McFad-
den’s (1974) pseudo-R2:

PRE � 1 � ln Lnull/ln Lfit,

where ln Lnull is the log-likelihood of the null model as
defined earlier, and ln Lfit is the log-likelihood of whatever
model has been fitted. If it is desirable to consider other
reference models, the PRE approach can easily be adapted
by substituting a different model for the null model. The
PRE statistic is often disappointingly small and may not
attain the theoretical maximum value of 1; thus, many
different adjustments to PRE have been proposed. For in-
stance, Nagelkerke’s (1991) statistic is adjusted by the max-
imum possible PRE in the sample. Its formula is

PRENagelkerke � �1 � �Lnull/Lfit�
2n/�1 � �Lnull�

2n,

where Lnull and Lfit are the likelihoods (not log-likelihoods)
of the null and fitted models, respectively.

Diagnostics require suitable influence measures and as-
sessment of the residuals. Ferrari and Cribari-Neto (2004)
provided a derivation of deviance residuals (i.e., based on
log-likelihood contributions), but their model does not in-
clude dispersion covariates and it is unclear what their
expression for deviance residuals means when dispersion
covariates are present. To assess influence of a case on the
estimated coefficients, we advocate leave-one-out jackknif-
ing after plotting to see if particular cases seem to have
unusually large residuals relative to the rest. Simply plotting
the predicted values versus the raw residuals or plotting the
sorted predicted values versus the corresponding observed
values is highly informative as ill-fitting cases usually jump
out visually. Another effective way to screen for high le-
verage points is to estimate the model using the probit, logit,
and cauchit links and see whether the estimated coeffi-
cients—after rescaling them to lie on a common range so
the coefficients are comparable—change substantially for
different links. The probit is most sensitive to change in the
linear predictor, and the cauchit is least sensitive. The logit
falls in between, which makes it a good general-purpose
compromise. As with ordinary GLMs, reestimation after
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deleting a suspect case gives a useful sense of its influence
on the coefficients in both submodels. Beta models fit quite
rapidly on modern computers so multiple model refits are
feasible. Collett (2003) has a thorough discussion of many
aspects of model fit.

One commonly used diagnostic in ordinary regression is
not advisable here, namely, screening the dependent vari-
able to see if its marginal distribution is beta. The beta
regression model posits a conditional beta distribution. That
is, it claims Yi|(Xi,Wi) � Beta[�(Xi,Wi),�(Xi,Wi)], which
does not imply that Yi � Beta(�,�) unconditionally. In fact,
beta regression can be applied fruitfully to dependent vari-
ables whose marginal distributions are quite far from beta.
Although we note that plotting the dependent variable mar-
ginally is not helpful, it is useful to plot conditional densi-
ties. If they do not fit a beta distribution well, then that is a
sign that the model may not be appropriate. We illustrate
this point in the following examples.

Interpreting and Evaluating the Location and
Dispersion Submodels: Examples

This section deals with the evaluation and interpretation
of predictor effects in the location and dispersion submod-
els. Many readers will find links between this material and
the GLM, especially logistic regression and log-linear mod-
els, because the location submodel is linear in the logit scale
and the dispersion submodel is linear in the log scale. We
present three illustrative examples. The first is from a simple
experiment with a 2 � 2 factorial design, and the other two
are based on observational studies.

Example 1: 2 � 2 Factorial Design

Deady (2004) studied naı̈ve mock-jurors’ responses to the
conventional two-option verdict (guilt vs. acquittal) versus a
three-option verdict setup (the third option was the Scottish
“not proven” alternative). She crossed this between-subjects
factor with another between-subjects two-level factor in
which there was conflicting testimonial evidence (conflict
condition) versus one in which there was no conflicting
evidence (no-conflict condition). Participants were 104
first-year psychology students at The Australian National
University. One of the dependent variables was the juror’s
degree of confidence in her or his verdict, expressed as a
percentage rating (0–100). Deady hypothesized that the
conflicting evidence would lower juror confidence and that
the three-option condition would increase it.

Figure 3 displays histograms of the confidence ratings for
each of the four experimental conditions. At least one of the
graphs shows strong skew, and there appears to be het-
eroscedasticity as well. One notable feature is a response
bias for .5, particularly in the two-option cases, and for .75
in all conditions. We have also superimposed the predicted
distributions from the final beta regression model on these

pictures, which is discussed more fully below. For illustra-
tion, we use the previously mentioned rescaling of the
dependent variable to lie in the (0, 1) interval (effectively
shrinking the interval to [.005, .995] to avoid zeros and
ones):

y� � �y��N � 1� � 1/2/N � ��y/100��103� � 1/2/104.

The experimental condition design matrix uses effects cod-
ing so that no conflict � 	1 and conflict � 1, whereas the
two-option verdict � 	1 and the three-option verdict � 1.
A 2 � 2 ANOVA with Y as the dependent variable yields a
nonsignificant model overall, F(3, 100) � 1.797, p � .153,
and a significant result for Levene’s homogeneity test, F(3,
100) � 3.394, p � .021. A 2 � 2 ANOVA using the logit
transform of Y also yields a nonsignificant model, F(3,
100) � 1.540, p � .209. None of the individual coefficients
reaches significance in either model.

Turning now to a beta regression approach, for the null
model ln Lnull � 28.200. In a result reminiscent of the two
OLS models mentioned above, a beta regression model with
verdict, conflict, and their interaction term entered into the
location submodel only yields ln Lfit � 30.558, so the
chi-square change is 4.716, not significant with 3 df. How-
ever, including verdict, conflict, and their interaction term in
the dispersion submodel as well produces ln Lfit � 40.095,
so the chi-square change is 23.790 with 6 df (p � .001). The
overall model effect size is PRE � 1 – (ln Lnull/ln Lfit) � 1 –
(28.2/40.095) � .297.

All of the terms in the dispersion submodel are signifi-
cant. Moreover, the resultant model reveals a significant
interaction effect in the location submodel (and a nearly
significant main effect for conflict). This example illustrates
how new terms in one submodel can clarify the effects in
the other. Table 1 displays the model coefficients, asymp-
totic standard error estimates (using the Hessian, also
known as the “information matrix”; see any text on maxi-
mum-likelihood estimation, e.g., Rose & Smith, 2002, chap-
ter 12), and significance tests.

In the location submodel, predicted means mij are com-
puted in the usual fashion with the inverse-link function
after the coefficients have been substituted into the model.4

For instance, in the no-conflict/two-option cell we have

ln �m11/�1 � m11� � b0 � b1 � b2 � b3 � 0.9120 � 0.0050

� 0.1685 � 0.2800 � 0.7955,

so the predicted cell mean is

m11 � exp�0.7955�/�1 � exp�0.7955� � .6890.

4 Many software packages allow computation of linear and
nonlinear functions of estimated parameters. We recommend using
these commands when they are available because they usually
compute proper standard errors along with the desired estimate.
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The cell coefficients, predicted logits, predicted means, and
observed means are shown in Table 2. The cell coefficients
are the estimated interaction terms, with the main effects
terms as row and column entries. The coefficients in the
location submodel may be interpreted in terms similar to
odds ratios. For instance, mean confidence is higher in the
no-conflict than the conflict condition. The relevant coeffi-
cient, b2 � 0.1685, is the difference between the logit of m1.

and the logit of the grand mean m..: 1.0805 – 0.9120 �
0.1685. Therefore, exp(b2) is the ratio [m1./(1 – m1.)]/[m../(1
– m..)] � [.7466(1 – .7466)]/[.7134(1 – .7134)] � 1.1836 �
exp(0.1685).

In the dispersion submodel, predicted variances use both
predicted means and predicted dispersion parameters. Table
3 shows the dispersion submodel coefficients, dispersion
parameter estimates, and the predicted and observed vari-
ances. Denoting the sample estimate of �ij by fij, recall that

the negative coefficients in a cell, its row, and column all
sum to ln (fij). For instance, for the two-option/no-conflict
cell we have

ln � f21� � � d0 � d1 � d2 � d3 � 1.1737 � 0.3300

� 0.2195 � 0.3162 � 1.4071.

Substituting the dispersion and mean estimates into Equa-
tion 2 for the variance yields

s21
2 � �.6890�1 � .6890�/�1 � exp�1.4071� � 0.0421.

A natural way to evaluate deviations of the cell dispersion
parameters away from the grand mean dispersion parameter
is by taking ratios. For instance, fij is higher in the conflict
condition than in the no-conflict condition. The relevant
coefficient, d2 � 0.2195, is the difference between ln (f2.)

Figure 3. Confidence ratings for four experimental conditions.
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and ln (f..): 1.1737 – 0.9542 � 0.2195. Likewise, cell
variances may be compared with the grand mean variance
via ratios.

We are now in a position to interpret the entire model.
From Tables 2 and 3 we can see that mean confidence levels
are highest in the no-conflict/three-option and the conflict/
two-option conditions, but the conflict/three-option con-
dition not only has a lower mean but also has a substan-
tially larger variance than the other three conditions.
There are main effects on variance for both conflict and
verdict options, with the conflict and three-option condi-
tions having the greater variance. Inspection of Table 3
suggests that these effects are again driven by the larger
variance in the conflict/three-option condition. Looking
at the predicted distributions shown in Figure 3, we can

see that much of the misfit in the model is due to the
.5/.75 response bias mentioned previously— otherwise
the predicted densities track the histograms well. The
effect of the bias is to create a spike at these points. This
sort of pattern is not uncommon in a scale of the type
used here to assess confidence and is often a sign of a
noninformative response from the participant. One way
to handle this problem formally would be to use a finite
mixture model, where the response scale is decomposed
into two parts, a nonresponse and a genuine response. We
are working on procedures for estimating such models in
the beta regression context, though in a relatively small
data set it is unlikely to be possible to estimate a finite
mixture model.

More generally, Long (1997, pp. 61–82) provided a de-
tailed and highly readable examination of methods useful in
logistic regression and other generalized linear models.
These extend naturally to the beta regression case and
should be given serious consideration. As he noted regard-
ing binary response models (BRMs, e.g., logistic or probit
regression), “Since the BRM is nonlinear, no single ap-
proach to interpretation can fully describe the relationship
between a variable and the outcome probability. You should
search for an elegant and concise way to summarize the
results that does justice to the complexities of the nonlinear
model” (Long, 1997, p. 61). One of the most useful ways to
understand how the dependent variable changes with a
covariate is to plot the predicted values over the range of the
selected covariate, holding all other covariates at constant
values, for example, their means or some other relevant

Table 1
Full Model Coefficients, Standard Errors, and Significance Tests
For Example 1

Parameter Coefficient SE p

Location submodel
b0 0.9120 0.1040 .0000
b1 (verdict) 0.0050 0.1040 .4808
b2 (conflict) 0.1685 0.1040 .0525
b3 (Verdict � Conflict) 0.2800 0.1040 .0035

Dispersion submodel
d0 	1.1737 0.1278 .0000
d1 (verdict) 0.3300 0.1278 .0049
d2 (conflict) 	0.2195 0.1278 .0429
d3 (Verdict � Conflict) 	0.3162 0.1278 .0067

Table 2
Location Submodel Coefficients, Logits, and Predicted Means
For Example 1

Statistic
2-option
verdict

3-option
verdict Total

Coefficientsa

No conflict 	0.2800 0.2800 0.1685
Conflict 0.2800 	0.2800 	0.1685
Total 	0.0050 0.0050 0.0000

Logit(mij)
No conflict 0.7955 1.3656 1.0805
Conflict 1.0185 0.4685 0.7435
Total 0.9070 0.9170 0.9120

Predicted means mij

No conflict .6890 .7967 .7466
Conflict .7347 .6150 .6778
Total .7124 .7144 .7134

Observed means
No conflict .6885 .7908 .7406
Conflict .7228 .6643 .6941
Total .7056 .7300 .7178

a Cell coefficients correspond to the interaction effect parameter b3, column
coefficients to the main effect parameter b1, and row coefficients to the
main effect parameter b2 in Table 1.

Table 3
Dispersion Submodel Coefficients, Log-F Estimates, and
Predicted Variances for Example 1

Statistic
2-option
verdict

3-option
verdict Total

Coefficientsa

No conflict 0.3162 	0.3162 	0.2195
Conflict 	0.3162 0.3162 0.2195
Total 	0.3300 0.3300 0.0000

ln(fij)
No conflict 1.4071 1.3794 1.3932
Conflict 1.6004 0.3079 0.9542
Total 1.5037 0.8437 1.1737

Predicted sij
2

No conflict .0421 .0326 .0376
Conflict .0327 .1003 .0607
Total .0373 .0614 .0483

Observed sij
2

No conflict .0408 .0295 .0370
Conflict .0244 .0843 .0535
Total .0322 .0588 .0452

a Cell coefficients correspond to the interaction effect parameter d3, column
coefficients to the main effect parameter d1, and row coefficients to the
main effect parameter d2 in Table 1.
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baseline. In an experimental design such as the one dis-
cussed above, it is straightforward to plot the conditional
densities predicted by the model, as shown in Figure 3. R
code to generate the plots is available on the Web pages
referred to in Footnote 2.

Example 2: Stress, Depression, and Anxiety

This example illustrates the use of a continuous predictor.
The unpublished data come from a sample of 166 nonclini-
cal women in Townsville, Queensland, Australia. The vari-
ables are linearly transformed scales from the Depression
Anxiety Stress Scales (Lovibond & Lovibond, 1995), which
normally range from 0 to 42. Figure 4 shows kernel density
estimates for the two variables.

As one would expect in a nonclinical population, there is
an active floor for each variable, with this being most
pronounced for anxiety. It should be clear that anxiety is
strongly skewed. In Figure 5, a local linear regression
(lowess) curve is plotted for the prediction of Anxiety �
Stress (Cleveland, 1993, Chap. 3). Lowess uses a nonpara-
metric smoothing approach to find a good-fitting curve that
tracks the data well. It thus provides a relatively unbiased
view of the conditional location relationship in the data
without the restrictions of a globally fit parametric model.
The lowess curve clearly suggests a nonlinear relationship
between anxiety and stress given its hockey-stick shape.
Likewise, heteroscedasticity is to be expected here on the-
oretical as well as empirical grounds: It is likely that some-
one experiencing anxiety will also experience a great deal of
stress, but the converse is not true, because many people
might experience stress without being anxious. That is,
stress could be thought of as a necessary but not sufficient

condition for anxiety. If so, the relationship between the
variables is not one-to-one plus noise, as predicted by or-
dinary homoscedastic regression, but instead is many-to-
one plus noise, which predicts heteroscedasticity (more
detailed discussions of tests of necessity vs. sufficiency may
be found in Smithson, 2005, and Smithson and Verkuilen,
2006).

We fit a beta regression with stress as a predictor in both
the location and dispersion models:

ln ��/�1 � �� � 	0 � 	1Stress

ln � � � 
0 � 
1Stress

Results from these regressions are included in Table 4. All
coefficients in both the location and dispersion submodels
are significant, indicating that stress predicts both the loca-
tion and heteroscedasticity, with higher values of stress
associated with increased variability in anxiety.

How well does the beta regression track the data? Figure
5 shows the scatterplot, the lowess curve, and two pre-
dicted-value curves, one from the beta regression model and
the other from an OLS model. If the two models are not
sufficiently different and there is no other basis for choice,
the simpler linear one is obviously preferable. However, the
beta predicted values do track the point cloud better than the
linear regression. The OLS model BIC � 	2*157.887 � 3*
ln (166) � 	300.438, whereas the beta regression BIC �
	2*301.960 � 4* ln (166) � 	583.472. For anxiety, the
beta predicted curve strongly resembles the lowess curve in
Figure 5, but unlike the lowess curve, the beta model has
only a few parameters. If one wants to make comparisons
with other data, this is helpful.Figure 4. Kernel density plots of anxiety and stress.

Figure 5. Best-fit curves for linear regression, lowess, and beta
regression. OLS � ordinary least squares.
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Another possible OLS model is to add a quadratic term.
Doing so yields a model with BIC � 	2*170.240 � 4*
ln (166) � 	320.032, which still is not nearly as good as
the beta regression model. Note that fit statistics alone do
not provide an adequate assessment of a model’s perfor-
mance. The quadratic model still does not handle heterosce-
dasticity. In addition, at the floor of stress (which in this
sample comprises about 10% of the data), both the linear
and quadratic OLS models make out-of-sample predictions
for anxiety, whereas beta regression never makes out-of-
sample predictions (by construction). Finally, there is little
rationale for adding the quadratic term, whereas we might
expect on theoretical grounds that there would be
heteroscedasticity.

Instead of adding more terms to the OLS model, we could
attempt to stabilize the variance and linearize the relation-
ship by transforming the original Anxiety scale. A popular
approach is the “ladder of powers” (Tukey, 1977), a family
of transformations of the form y* � y(1 	 b), where b takes
values from {-2, 	1, 0, 0.5, 1, 1.5, 2} with the case b � 1
denoting the natural log transformation. Typically, b is
estimated via a linear regression of the log of the absolute
value of the OLS residuals as predicted by the log of the
predictor. In this example, the estimate of b is 0.109 with a
standard error of 0.042, suggesting that b � 0 or perhaps b
� 0.5 would be the most reasonable candidates. However,
no value of b from 0 to 0.5 succeeds in stabilizing variance
(see also the automated transformation procedure applied to
this example later in this article), nor do transformations
corresponding to other nearby values of b, such as the log.
The main reason for this is that the floor of anxiety is also
its mode, and the cases at the floor cover nearly the same
range of values on stress as the rest of the data.

Figure 6 shows the predicted standard error of estimate
for the beta regression model and the untransformed OLS
model. The general “football” shaped standard error func-
tion for the beta model is plotted along with the OLS

standard error of estimate. The football is shifted toward the
top end of the Stress scale by the positive dispersion coef-
ficient. Some misfit in the model is evident from the rela-
tively large residuals near the bottom of the Stress scale.

Example 3: Sequential Regression With Dyslexia
and IQ Predicting Reading Accuracy

This example presents a simple sequential beta regression
using Pammer and Kevan’s (2004) previously mentioned
comparison between children with and without dyslexia.
They began by citing the suggestion that the reading per-
formance of dyslexic readers compared with normal readers
may simply be the result of differences in general cognitive
ability. A test of this suggestion is to take normal and

Table 4
Regression Coefficients and Summary Statistics for Example 2

Parameter or statistic

Null model Stress model

Coefficient SE Coefficient SE

Location submodel
b0 (anxiety) 	2.2440 0.0988 	4.0237 0.1442
b1 4.9414 0.4409

Dispersion submodel
d0 (anxiety) 	1.7956 0.1230 	3.9608 0.2511
d1 4.2733 0.7532

Summary statistics for anxiety
	2 ln L 	478.9 	603.9
PRE 0.207
AIC 	474.9 	595.9
Pseudo-R2 0.569

Note. PRE � proportional reduction of error; AIC � Akaike’s information criterion.

Figure 6. Standard error plots for linear regression versus beta
regression. OLS � ordinary least squares.
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dyslexic readers who differ on IQ, where IQ would there-
fore be expected to explain reading ability, and ascertain
whether there still is anything about dyslexia that predicts
reading skill, even when IQ is taken into account. As
mentioned at the beginning of this article, such a test is
complicated by the heavily skewed reading-accuracy scores
among normal readers—with many participants achieving
the maximum possible score—and heterogeneity of vari-
ance between the two groups.

Participants were recruited from primary schools in the
Australian Capital Territory, resulting in a sample of 44
children (19 children with dyslexia and 25 controls). They
ranged in age from 8 years 5 months to 12 years 3 months,
with an average age of 10 years 6 months. Consultation with
specialist teachers indicated that none of the children had
any history of neurological illness or emotional problems
and that all had experienced normal educational opportuni-
ties. All children had normal to corrected-to-normal visual
acuity and normal hearing.

The following analyses use nonverbal IQ scores con-
verted to z scores and dyslexia status coded as 	1 �
nondyslexic and 1 � dyslexic. Now we use a beta regres-
sion approach. Entering IQ first in both the location and
dispersion submodels yields a chi-square change from the
null model of �2(2) � 2*(34.9238 – 26.4206) � 17.0064,
p � .0002. The location submodel coefficient for IQ is
positive as expected and significant, whereas the dispersion
submodel coefficient is not significant.

Entering the main effect term for dyslexia status results in
a large chi-square increase over the IQ-only model, �2(2) �
2*(61.2569 – 34.9238) � 52.6662, p � .0001. Moreover,
this model is significantly improved by adding the interac-
tion term to the location submodel—the chi-square change
is �2(1) � 2*(65.9019 – 61.2569) � 9.4620, p � .0237—
whereas adding the interaction term to the dispersion sub-
model yields only negligible change in model fit.

The coefficients and significance tests for our final
model are shown in Table 5 and compared with the
results from an OLS regression model using the logit
transform of accuracy scores. Unlike the OLS model, in
the beta regression model it is clear that dyslexia status
accounts for both location and dispersion when the ef-
fects of IQ have already been taken into account, and IQ
still makes an independent contribution. Although the
OLS model’s coefficients share the same signs with the
beta regression location submodel coefficients, their
magnitudes differ substantially. Moreover, the standard
errors in the OLS model are inflated because of its
inability to separately model heteroscedasticity. The OLS
model can say nothing about the effects of IQ or dyslexia
status on the variability in accuracy scores.

Both submodels are readily interpretable in ways that
make sense out of the data. In the location submodel, the
control group logit is exp(b1) � 2.0995 times greater than
the grand-mean logit, or exp(2b1) � 4.4079 times greater

than the dyslexic group logit. An IQ score one standard
deviation above the mean predicts a logit that is exp(b2) �
1.6263 times higher than the grand-mean logit. The inter-
pretation of the main effects is that accuracy declines for the
dyslexic group and increases with IQ. The interaction effect
indicates that the positive relationship between IQ and ac-
curacy holds for the nondyslexic group (b2 – b3 � 1.0676)
but not for the dyslexic group (b2 � b3 � 	0.0949), a
finding that makes clinical sense. Dyslexic readers have
difficulty reading regardless of their general cognitive abil-
ity, whereas cognitive ability predicts reading accuracy for
nondyslexics. The predicted means are displayed in the
upper half of Table 6.

Both coefficients in the dispersion model are negative,
indicating underdispersion for the dyslexic group and higher
IQ children. Again, it is worth bearing in mind that the
decrease in variance for higher IQ children is greater than
the decrease that would be expected solely from the effect
of higher accuracy scores. Likewise, a possible explanation
for the lower variance in the dyslexic group stems from the
location model interaction effect described above; dyslexia
thwarts the effect of IQ on reading accuracy.

Both the effect of group and the effect of IQ seem large
relative to the achievable range of the variance. The pre-
dicted variances displayed in Table 6 bear out this impres-
sion, showing values ranging from .0005 to .0896, covering
a large part of the 0–.25 range for variances of beta-
distributed variables. Figure 1 displays the predicted distri-
butions generated by this model for the controls versus
dyslexics superimposed on the histogram, illustrating how
effective the beta regression model is in modeling skew as
well as location and dispersion.

Table 5
Model Coefficients, Standard Errors, and Significance Tests
for Example 3

Parameter Coefficient SE p

OLS regression (logit transform)

b0 1.6011 0.2259 .0000
b1 (dyslexia) 	1.2056 0.2259 .0000
b2 (IQ) 0.3954 0.2255 .1187
b3 (Dyslexia � IQ) 	0.4229 0.2255 .0681

Beta regression

Location submodel
b0 1.1232 0.1509 .0000
b1 (dyslexia) 	0.7417 0.1516 .0000
b2 (IQ) 0.4863 0.1671 .0018
b3 (Dyslexia � IQ) 	0.5812 0.1726 .0003

Dispersion submodel
d0 	3.3044 0.2265 .0000
d1 (dyslexia) 	1.7465 0.2940 .0000
d2 (IQ) 	1.2290 0.4596 .0037
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Conclusion

Our title “A Better Lemon Squeezer?” refers to the fact
that badly skewed heteroscedastic data, and even multimo-
dal data, arise in practice frequently. These are the lemons
of research in the social and behavioral sciences, and when
you are handed lemons, it is best to learn how to make
lemonade rather than wishing (or pretending) you had
something else. Instead, far too often a suspect model is
applied or some mostly ineffective remedial measures are
taken in the hopes that the problems will go away. Even
worse, data are simply discarded as being not analyzable.
Finally, investigators frequently “deskew by design,” drop-
ping potentially relevant and informative dependent vari-
ables from consideration simply because they do not look
sufficiently normal.

There are several alternative approaches to dealing with
the combination of skewness and heteroscedasticity in vari-
ables with scales bounded at both ends. We agree with
Kieschnick and McCullogh’s (2003, pp. 196–197) assertion
that the most common practices are seriously flawed. OLS
linear regression assumes that the dependent variable covers
the real line and is conditionally normally distributed, and
the conditional expectation function is linear. Clearly none
of these assumptions hold for bounded dependent variables.
Moreover, boundedness implies that the conditional vari-
ance depends on the mean. However, several alternatives
for dealing with skewness and heteroscedasticity deserve
serious consideration along with beta regression. We con-
sider the following potentially viable alternatives:

1. ordinal regression,

2. robust regression,

3. OLS regression using a transformation and normal
error term,

4. Tobit regression with censoring,

5. alternative parametric models, and

6. a semi-parametric quasi-likelihood approach.

Although it is beyond the scope of this article to treat these
in detail, we summarily compare them with beta regression
and suggest criteria for choosing among them.

Ordinal regression models have been available for several
decades now, and programs to estimate them are found in
most mainstream statistics packages. They are straightfor-
ward extensions of the category thresholds approach to
binary logistic or probit regression to discrete ordinal data.
We refer readers to Long (1997) for a basic introduction to
ordinal models. Although they are commonly used in other
fields, they seem relatively unknown in psychology, except
for confidence ratings used in signal detection experiments.
In general, relatively coarse discrete data, such as four- or
five-option Likert scales, can be fruitfully analyzed using
this approach, but estimation breaks down when the number
of response categories grows large unless the sample also is
very large. If the response scale is coarse, ordinal regression
should be considered over beta regression. The standard
ordinal regression model does not handle heteroscedasticity,
but some programs can estimate heteroscedastic models, for
example, SPSS PLUM, SAS nlmixed, or Stata ologit, opro-
bit, and slogit. Beta regression and ordinal regression are
similar in approach, and exploring their similarities is an
active line of research for us.

Robust regression refers to techniques initially developed
by Huber and Hampel and summarized in Huber (1981) and
Hampel, Ronchetti, Rousseeuw, and Stahel (1986). A num-
ber of variants have been proposed more recently. Stautde
and Sheather (1990) or Wilcox (2005) are more accessible
references. These approaches originally were intended to
handle problems with estimators such as the mean or stan-
dard deviation posed by outliers. Roughly speaking, the idea
behind robust estimators is to estimate parameters using
some kind of trimming or down-weighting of the most
extreme observations. The model of the data behind robust
regression differs from beta regression in two important
respects. First, it usually starts with the premise that the
dependent variable is unbounded and the underlying distri-
bution is continuous, often Gaussian or at least symmetrical,
but contaminated by outliers. (However, proponents such as
Wilcox, 1998, claim that even when there are no outliers
and distributions are skewed, robust regression offers a
substantial advantage over standard techniques.) This is not
the case with bounded scales, where skew and heterosce-
dasticity are directly attributable to the bounds and variance
is always finite.

The second difference involves the relationship between
linear predictor and dependent variable in a bounded space.
There are diminishing returns in changes in scale near the
boundaries of the space, which induces positive curvature
(Schönemann, 1983). This aspect is not something built into
the robust regression model, as far as we know. Although
polynomial terms can be used to handle this curvature, they
do not respect the bounds on the domain, only approximate
the diminishing returns phenomenon, generally lack any

Table 6
Predicted Means and Variances for Dyslexic–IQ
Model (Example 3)

IQ level Control Dyslexic Total

Predicted means(mij)
IQ � 1 SD above mean .9494 .5712 .8334
IQ � 1 SD below mean .6894 .6169 .6540
Total .8659 .5943 .7546

Predicted variance (sij
2)

IQ � 1 SD above mean .0028 .0005 .0015
IQ � 1 SD below mean .0896 .0051 .0252
Total .0202 .0015 .0066
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theoretical motivation (the best justification for polynomial
regression is usually from the perspective of a Taylor series
approximation to a nonlinear function), and can generate
absurd predictions. A related point is that a standard robust
regression model does not address heteroscedasticity per se,
whereas the beta regression model explicitly does so. There
is definitely a place for robust methods, but in our experi-
ence it rarely makes much of a difference on bounded scale
data.

A third popular practice is transforming the dependent
and/or independent variable and then applying OLS regres-
sion to the transformed variable(s). We have already de-
scribed the ladder-of-powers approach and applied it to our
second example. Such transformations can produce linearity
and stabilize variance. However, they may fail in the latter.
Another crucial test of the adequacy of this approach is
whether the residuals are normally distributed as assumed.
The transformed OLS regression model fails on both counts
in our examples and will generally do so in the presence of
an active floor or ceiling. Transformations of this kind are
most likely to be effective if there is no active floor or
ceiling in the dependent variable and if the log of the
absolute residuals is linearly related to the log of the pre-
dictor. One important advantage that beta regression shares
with other GLMs over the ladder-of-powers transformations
stems from the fact that the transformations transform raw
data, whereas the link function in any GLM transforms
expected values. The error distributions in the GLMs are
more likely to be well-behaved as a consequence. However,
researchers understandably may want to explore this trans-
formation option before embarking on beta regression.

Another relatively obvious alternative is to use the CDF
of a continuous random variable as a nonlinear regression
model with a normally distributed error term. For example,
Hermalin and Wallace (1994) used the normal CDF as their
conditional expectation function, and Kieschnick and Mc-
Cullogh (2003) used the logistic CDF. The adequacy of this
approach, like the logit transformation, hinges on variance
stabilization and normality of residuals. In Kieschnick and
McCullogh’s comparison this approach did not perform as
well as beta regression. It is also the case that the bounds are
not treated explicitly.

A more general—if largely atheoretical—approach is to
use an automatic transformation routine, such as Tibshira-
ni’s (1988) additivity and variance stabilization (AVAS)
procedure. AVAS tries to find the transformation that best
linearizes the relationship between regressors and the re-
gressand and stabilizes variance. Applying this method to
our second example (in S-PLUS, 2000), we find that AVAS
barely transforms anxiety while radically transforming
stress. The stress transformation maps the lowest score (.01)
to 	0.97, while compressing scores between .05 and .37 to
a tiny range from 0.866 to 0.976, whereafter the transfor-
mation describes a concave curve up to about 3.4 for a stress
score of .70. The result is an exaggerated version of a logit

transform that still does not entirely stabilize variance and
presents rather severe problems of interpretation.

Tobit regression with censoring at both boundaries can be
appropriate for modeling dependent variables that have pure
boundary cases, for example, whose range is the closed
interval [0, 1], whereas the applicable range for a beta-
distributed variable is the open (0, 1) interval. A two-limit
Tobit model (cf. Long, 1997, pp. 205–212) posits a latent
variable Y that is censored at 0 and 1. For censored
observations,

Pr�yi  0�xi� � ��	xi	/�i� and

Pr�yi  1�xi� � 1 � ��1 � xi	/�i�,

where � is the standardized normal CDF, xi is a row vector
of regressors from the design matrix X, and �i is the
standard deviation. For uncensored observations,

yi � xi	 � �i,

where �i is distributed N(0, �i
2). An example of this kind of

censoring is a scale that is the sum of a finite bank of
interval-scaled items. Often the lowest possible score on
that scale is not a true zero, nor is the highest possible score
a true upper bound on the construct being measured.

A Tobit distribution on [0, 1] is a mixed continuous-
discrete distribution, with discrete masses at 0 and 1,
whereas the beta distribution is defined on (0, 1). Tobit
models treat boundary cases as qualitatively distinct from
cases in the interior, whereas beta regression does not. In a
Tobit model, skew, heteroscedasticity, and even bimodality
are accounted for by the masses at 0 and 1 rather than the
diminishing returns phenomenon reflected in a beta model.
Moreover, for values in (0, 1) a Tobit model will be obser-
vationally equivalent to normal regression and will not have
the diminishing returns property of a beta regression. Re-
searchers should therefore prefer a beta to a Tobit regression
when the boundaries are regarded as fixed (i.e., it is not
meaningful to consider out-of-domain scores and so there is
no censoring) and when boundary scores are not considered
as qualitatively distinct from interior scores.

From the foregoing remarks, the reading accuracy test
example could be analyzed with a Tobit model with cen-
soring at the upper end of the test scale and an appropriate
dispersion submodel. It turns out that a maximum-likeli-
hood Tobit model of these data yields much the same results
as the beta regression model (details are available from
Michael Smithson). We may compare these models’ good-
ness of fit by using the BIC statistic. The results are as
follows:

Tobit BIC � 	2*21.602 � 7* ln �44� � 	16.715

Beta BIC � 	2*65.902 � 7* ln �44� � 	105.315.
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The beta regression model performs markedly better,
though the Tobit model could possibly be argued for on
substantive or measurement grounds. It should be noted that
the Gaussian Tobit model is known to be sensitive to
misspecification of the underlying distribution, though we
do not at this point know how sensitive to misspecification
the beta model is.

An example of an alternative conditional distribution
model for a dependent variable on (0, 1) is the simplex
distribution (Barndorff-Nielsen & Jorgensen, 1991). Like
the beta parameterization presented here, the simplex dis-
tribution is parameterized in terms of a mean and standard
deviation. Unlike the beta model, the simplex distribution is
naturally a deviance-based model. Kieschnick and McCul-
logh (2003) compared it with their beta regression model on
two data-sets and found the beta model slightly outper-
formed it both times in terms of goodness of fit. Of course,
this approach should not be dismissed on the basis of these
outcomes. When and where the simplex and beta models
outperform one another is an open question. Nonetheless, it
should be noted that the simplex model requires as much
effort to fit and interpret as the beta model.

Cox (1996) and Papke and Wooldridge (1996) applied a
quasi-likelihood approach to modeling a variable on the unit
interval. The quasi-likelihood approach specifies the first
and second moments of the conditional distribution as func-
tions of the mean but does not specify the full distribution;
in this sense it is a second-order analog of maximum-
likelihood. This approach is useful when the relationship
between the mean and variance is not captured by a standard
distribution, for example, as found in Wedderburn’s classic
leaf blotch data, where Var(Y) � �2(1 – �)2 gives a much
better fit than Var(Y ) � �(1 – �), the variance function
implied by the beta distribution (McCullagh & Nelder,
1989). Kieschnick and McCullogh (2003) compared a spe-
cial case of Papke and Wooldridge’s model with their beta
regression model on two data sets and found that both
worked reasonably well and gave similar results. However,
they advised researchers to use beta regression unless the
sample is large enough to justify the asymptotic arguments
underlying the quasi-likelihood approaches for reasons dis-
cussed in Godfrey (1988). However, for the interested
reader, we note that SAS GLIMMIX has particularly useful,
very general purpose quasi-likelihood estimation facilities
(SAS Institute, 2005).

It should be clear by now that we are not claiming that
beta regression is always the best choice, but we have made
a case that it can provide a prudent and productive alterna-
tive to current practices. It not only fits strongly skewed
distributions well and handles heteroscedasticity effec-
tively, but it also enables researchers to model both disper-
sion and location in a natural way. Moreover, the sets of
covariates in the two submodels need not be identical, so
researchers can test hypotheses about the prediction of
dispersion and location separately. The beta distribution

itself is a sensible alternative to the normal distribution,
particularly for variables whose scales are bounded below
and above. Having just two parameters, the beta distribution
is as parsimonious as the normal distribution. As we noted,
many psychological variables have such bounds, even if
they are routinely ignored. When those bounds are mean-
ingful or when participants’ responses are affected by them,
and thus exhibit diminishing returns near the boundary of
the response space, beta regression should be considered.
Both theoretical and empirical guidelines can aid research-
ers in deciding whether beta regression is appropriate or
useful. Theoretical considerations include the underlying
genesis of a random variable, its domain, and the nature of
boundary values. Empirical considerations include several
common to GLMs: goodness of fit in comparison to alter-
native models, sample size relative to model complexity,
and the behavior of model residuals.

Starting with theoretical matters, a variable’s genesis may
correspond to a process that generates a beta distribution,
thereby making the beta regression model a natural choice.
The most familiar case is a variable of the form Y �
X1/(X1 � X2), where X1 and X2 are two independent random
variables with Gamma distributions. Examples of X1 and X2

that fit this description are amounts of time devoted to two
subtasks or amounts of money allocated to two types of
investment (with total task time or total investment being
X1 � X2). Verkuilen (2005) discussed models of this basic
form for continuous expressions of preference. Consult
Johnson et al. (1995) and Gupta and Nadarajah (2004).

When a variable is bounded between 0 and 1 but its
generating mechanism is unknown, the situation is more
ambiguous and there is no commonly accepted distribution
model. As we have suggested, a crucial distinction is be-
tween variables defined on the closed unit interval [0, 1] and
those defined on the open unit interval (0, 1). For variables
on (0, 1), beta regression is a viable candidate. However,
variables on [0, 1] are best considered as a mixed discrete-
continuous process, because observations at 0 and 1 usually
are mass points. In addition to Tobit models, discrete-
continuous mixture models with beta regression as the con-
tinuous component certainly are conceivable, but such mod-
els currently are unexplored.

A still more ambiguous (but very common) situation is a
bounded variable with no true zero (e.g., an interval-level
scale). Researchers should carefully consider the nature of
the bounds, especially whether they are best regarded as
fixed (i.e., whether boundary cases are censored or not) and
whether the domain constitutes an open or closed interval.
After all, most variables are bounded in practice, but the
bounds are arbitrary and do not correspond to meaningful
bounds on the underlying construct. Another practical ques-
tion is how robust beta regression is under violations of
continuity. Our experience thus far indicates that for re-
sponses as coarse as 7-point scales, the technique functions
well, but the issue does need systematic investigation.
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Turning now to empirical issues, we have made several
suggestions throughout this article for evaluating the ade-
quacy of a beta regression model and we summarize and
extend them here. Starting with goodness-of-fit measures,
the best guides currently are AIC and/or BIC. The log-
likelihood chi-square statistic for nested model comparisons
is essential in searching for the best model. Likewise, as we
have done in this article, comparisons may be made between
a beta regression model and any competing model whose
likelihood can be computed. For individual model terms,
standard errors are also a good indicator of model perfor-
mance. We have found these particularly helpful in evalu-
ating the appropriateness of dispersion submodels; unusu-
ally large standard errors suggest that the submodel may be
misspecified.

The small sample behavior of beta regression currently is
not well-known, so researchers will need to exercise caution
in applying beta regression to small data sets. At the very
least, the usual advice available regarding sample size rel-
ative to number of model parameters in GLMs should be
heeded, bearing in mind that estimating location and dis-
persion submodels potentially introduces two parameters
for every independent variable. Moreover, we recommend
using both asymptotic and bootstrap estimates of parameter
standard errors. Large differences between these would
suggest the sample size may be too small and/or the model
may be misspecified.

Finally, as with GLMs generally, model residuals provide
a wealth of diagnostic information. As we have mentioned,
plotting the predicted values versus the raw residuals or
plotting the sorted predicted values versus the correspond-
ing observed values is highly informative. Combining a
residuals plot with predicted standard-error curves as in
Figure 6 helps evaluate how well the dispersion submodel is
handling variation. As mentioned earlier, we also recom-
mend leave-one-out jackknifing or reestimation after delet-
ing a suspect case for indications of case-wise influence on
the coefficients in both submodels.

At least two extensions of beta regression seem worth
exploring in the near future. One is mixed (or multilevel)
and latent-variable modeling. Many commonly used models
can be specified as regressions with hierarchical mixtures of
distributions. Our initial forays into mixed models have
indicated that estimation is more difficult than the indepen-
dent observations case and may require Monte Carlo meth-
ods. The second extension is to generalizations of the beta-
distribution by way of greater flexibility for models.
Chapter 5 of Gupta and Nadarajah (2004) provides a useful
survey of generalized beta distributions, but unfortunately
none of them is readily reparameterized into a location-
dispersion GLM. An alternative that we are investigating is
linear mixtures of betas, which show promise in modeling
multimodality as well as skew and heteroscedasticity.
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