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Mixed and Mixture Regression Models

for Continuous Bounded Responses Using
the Beta Distribution

Jay Verkuilen

City University of New York

Michael Smithson

The Australian National University

Doubly bounded continuous data are common in the social and behavioral

sciences. Examples include judged probabilities, confidence ratings, derived

proportions such as percent time on task, and bounded scale scores.

Dependent variables of this kind are often difficult to analyze using normal

theory models because their distributions may be quite poorly modeled by the

normal distribution. The authors extend the beta-distributed generalized linear

model (GLM) proposed in Smithson and Verkuilen (2006) to discrete and con-

tinuous mixtures of beta distributions, which enables modeling dependent data

structures commonly found in real settings. The authors discuss estimation

using both deterministic marginal maximum likelihood and stochastic Markov

chain Monte Carlo (MCMC) methods. The results are illustrated using three

data sets from cognitive psychology experiments.

Keywords: beta distribution; general linear model; mixed model; mixture model

1. Introduction

Continuous dependent variables with scales bounded at both ends are fairly

common throughout the social and behavioral sciences. Examples from psychol-

ogy are the percentage of time attending one stimulus versus another as in habi-

tuation studies, subjective probability or confidence ratings common in cognitive

research, or total scores on a symptom questionnaire applied in a community set-

ting. In behavioral economics examples include most utility scales (usually

assumed to be bounded at both ends) and proportional measures such as alloca-

tions to investments in a portfolio and leverage (the ratio of debt to assets plus
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debt). These continuous doubly bounded dependent variables frequently present

special problems for modelers. Chief among these are uncorrectable skew and

heteroscedasticity, both often arising from the fact that as the mean response

moves toward either scale boundary, the variance tends to decrease and skew

tends to increase. In short, in a bounded response space, the moments of the dis-

tribution are inextricably linked. Furthermore, the closer one is to a boundary the

stronger this linkage is.

Several authors (Kieschnick & McCullogh, 2003; Paolino, 2001; Smithson

& Verkuilen, 2006) have presented arguments that traditional methods such as

regression-linearizing and variance-stabilizing transformations or robust estima-

tors are not always appropriate for modeling this kind of limited dependent

variable. They propose an alternative in the form of using the beta distribution

to model such variables. The beta distribution is a well-known member of the

exponential family of distributions for which the regularity conditions that help

ensure maximum likelihood estimates exist and are well defined. Nevertheless, the

literature on generalized linear models (GLMs) for beta-distributed dependent

variables (i.e., beta regression) is sparse. In the otherwise exhaustive Handbook

of Beta Distributions, there is no mention of beta regression (Gupta & Nadarajah,

2004), although there is a sizeable parallel literature on beta-binomial regression

(an early instance is Crowder, 1978), suited to modeling proportions of counts

where the beta distribution is used as a hierarchically specified random effect to

address overdispersion.

An early example of beta regression is Brehm and Gates’s (1993) model of

police compliance with supervision. However, Paolino (2001) was the first to

employ the mean-precision parameterization of the beta distribution that greatly

simplifies interpretation. Apparently independently, Ferrari and Cribari-Neto

(2004) derived a similar beta regression model that recently has been implemented

in the SAS GLIMMIX procedure (SAS, 2008), and likewise Kieschnick and

McCullogh (2003) compared the performance of a beta regression model for

proportions, as employed in economics and finance research, with several alterna-

tives and concluded that it is often the best option. Noël and Dauvier (2007) and

Noël (2008) have presented unfolding and dominance item-response models for

continuous doubly bounded scale items based on the beta distribution.

Some of the above-mentioned versions of beta regression treat the precision

parameter as a nuisance. Recently Smithson and Verkuilen (2006) followed and

extended Paolino’s model by explicitly modeling precision (and therefore disper-

sion) as well as the mean response, utilizing the extended GLM framework for

joint modeling of means and dispersions described in Chapter 10 of McCullagh

and Nelder (1989) and developed by Smyth (1989) for random variables in the

exponential family of distributions. There are good reasons for regarding the

modeling of dispersion as important in its own right. We concur with Carroll’s

(2003) observation that ignoring variance structure or treating it as simply a nui-

sance not only can lead to inefficient estimation but to misleading conclusions.
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Smithson and Verkuilen (2006) presented real-world examples of this and the

present article includes additional illustrations.

Likelihood maximization has been the dominant approach in estimating

beta regression models (e.g., Paolino, 2001; Smithson & Verkuilen, 2006),

with Vasconcellos and Cribari-Neto (2005) and Ospina, Cribari-Neto, and

Vasconcellos (2006) proposing bias-correcting adjustments. Epsinheira, Ferrari,

and Cribari-Neto (2008a, 2008b) explore alternative weighted standardized resi-

duals and influence diagnostics for the Ferrari-Cribari-Neto beta GLM. Buckley

(2002) implemented the Paolino model in a Bayesian Markov chain Monte Carlo

(MCMC) procedure, and Smithson and Verkuilen (2006) also did so with their

version.

A number of gaps remain in our knowledge about beta regression models.

Chief among them is the absence of methods for handling dependent observa-

tions. In this article, we develop and explore generalized linear mixed models

(GLMMs) and related dependent-observation models for beta-distributed

dependent variables. Justifications for GLMMs as a way of handling dependen-

cies are well known. The dependencies among observations may arise naturally

from effects such as autocorrelation over time, within-subject correlations in

repeated measures experiments, or clumping due to within-cluster homogene-

ity. We begin by reprising the independent-observations beta regression model

and then developing an overall framework for beta GLMMs, including both

mixed and mixture distribution models. A simulation example is presented,

comparing maximum likelihood and Bayesian MCMC estimations, along with

a discussion of variance partition issues and goodness of fit. Three examples of

applications to real data are provided.

2. Regression With the Beta Distribution

2.1. Independent Observations

This section summarizes a longer discussion found in Smithson and Verkuilen

(2006). Let y � Betaða; βÞ 2 ð0; 1Þ, where a; β > 0 are shape parameters.1 The

probability density function (PDF) is

f ðy; a; βÞ ¼ �ðaþ βÞ
�ðaÞ�ðβÞ y

a�1ð1� yÞβ�1; ð1Þ

where �ð�Þ is the complete gamma function. The two shape parameters pull den-

sity toward 1 (a) or 0 (β). Standard results show that

EðyÞ ¼ a
aþ β

; ð2Þ

and
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varðyÞ ¼ EðyÞð1� EðyÞÞ
aþ βþ 1

: ð3Þ

The standard parameterization of the beta is most useful when it is used as a

prior, where the parameters correspond to degrees of freedom. However, it is

inconvenient for a regression model. Let m ¼ EðyÞ and precision parameter

f ¼ aþ β, which can be inverted to show a ¼ fm and β ¼ fð1� mÞ. Upon

reparameterization,

f ðy; m;fÞ ¼ �ðfÞ
�ðfmÞ� fð1� mÞð Þ y

fm�1ð1� yÞfð1�mÞ�1: ð4Þ

We use the mean-precision parameterization henceforth, denoting such a distri-

bution as Beta fm;fð1� mÞð Þ. Whenever, f > 2, the distribution has a mode on

the interior of ð0; 1Þ. Whenever f < 2, the distribution is bimodal, with m control-

ling the relative height of the anti-modes, and f ¼ 2 implies a J- or L-shaped dis-

tribution, depending on whether m < 0:5 or m > 0:5, respectively. When m ¼ 0:5
and f ¼ 2, the distribution is uniform. Finally, the distribution reflects about 0.5

in that if y � Betaðfm;fð1� mÞÞ, then 1� y � Betaðfð1� mÞ;fmÞ:
To form a regression model, consider two design matrices X;V associated

with the location and dispersion, respectively, so that xi; vi are their ith row

vectors. It is assumed that X;V are of full rank (typically they have a column

vector 1 for an intercept). Define two vectors of regression weights, �; �, which

are related to m and f through two link functions as

log
mi

1� mi

� �
¼ xi�; ð5Þ

log fið Þ ¼ vi�: ð6Þ

(More generally, gð�Þ 2 ð0; 1Þ and hð�Þ > 0 may be used for location and disper-

sion link functions.) We use the logit/log pair in this article, which restrict

0 < m < 1 and f > 0 as required. Other link functions such as the probit or com-

plementary log–log for location or reciprocal for dispersion could be used as

well. We believe the logit link is the most broadly useful for the location submo-

del and the log for the dispersion submodel, but this is a matter for specific con-

sideration in light of theory and data. For instance, theory may support the use of

a complementary log–log link for location, as is the case for a discrete time sur-

vival model (Fahrmeier & Tutz, 2001).

In summary, beta regression assumes

yjX;V � Beta fðVÞmðXÞ;fðVÞ 1� mðXÞð Þð Þ: ð7Þ

It should be noted that the unconditional distributions can be markedly different

from the beta distribution. For instance, a beta distribution cannot be bimodal on
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the interior of the unit interval, but the distribution of a 50% Bernoulli mixture of

Betað5; 2Þ and a Betað2; 5Þ will be.

Let mi ¼ mðxiÞ and fi ¼ fðviÞ, where xi; vi are vectors of regressors for the ith

case. The likelihood function is

Lð�; �; y;X;VÞ ¼
Yn

i¼1

�ðfiÞ
�ðfimiÞ� fi 1� mið Þð Þ y

fimi�1
i ð1� yiÞfi 1�mið Þ�1: ð8Þ

Taking the natural logarithm gives

logLð�; �; y;X;VÞ ¼
Xn

i¼1

log �ðfiÞ � log �ðfimiÞ � log � fi 1� mið Þð Þ

þ fimi � 1ð ÞlogðyiÞ
þ fi 1� mið Þ � 1ð Þlog 1� yið Þ:

ð9Þ

The score function and Hessian of this likelihood can be derived using the chain

rule; they are rather unwieldy expressions and thus relegated to the Appendix.

The most important conclusion to draw from them is the fact that m and f are not

separable, unlike, say, the mean and dispersion parameters in the Gaussian case.

2.2. Estimation in the Independence Case

The beta forms a two-parameter exponential family and, for models lacking

dispersion regressors that are free of the usual trouble spots for any GLM

such as improperly scaled design matrices or collinearity, is generally quite

numerically tractable. The estimation theory for the independent case has been

examined in great detail by Ospina et al. (2006), who note that beta regression

for independent observations satisfies all usual regularity conditions for maxi-

mum likelihood estimation (MLE). Estimates of location parameters are very

close to unbiased even for modest samples while estimates for the precision

parameter tend to be somewhat optimistic, that is, too large, with the bias

increasing as the true precision increases. They propose a correction for this

bias, which we do not pursue here. In our experience, behavioral science data

tend to have relatively lower values of the precision parameter and are less

biased as a consequence. With a dispersion submodel, estimation is trickier and

better starting values for the parameters are required. We have found the best

procedure is to get starting values by fitting a reasonable location-only model

before considering dispersion covariates.

MLE proceeds through numerical maximization of the log likelihood using a

Newton or quasi-Newton method with standard errors for the parameters coming

from the inverse of the final Hessian, that is, observed information, or using

Fisher scoring and expected information. In general, Bayesian estimation seems

to be a bit more forgiving than MLE in the analyses we have conducted because

the priors serve to smooth the likelihood. Unsurprisingly, given that both are
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likelihood based, where MLE has problems, in particular, when f < 2, MCMC

usually exhibits poor mixing as well.

2.2.1. Handling Boundary Observations

One important problem with data on a bounded interval is the presence of exact

boundary observations, that is, 0 or 1. These observations occur in real data but are

impossible given the sample space of (0, 1). For instance, if the response scale is,

say, a discrete response scale on {0, 1, . . . , 100} that is being analyzed as a con-

tinuous score transformed into a proportion, exact values of 0 or 100 can and do

occur. Even in a slider response with extremely high resolution, it is not unlikely

that responses will pile up a bit at the boundary, causing a probably unimportant

but notable deviation from the model. Points on the interior such as the midpoint

may also occur more often than is entirely consistent with the model.

Provided that boundary observations do not represent qualitatively different

responses but instead are reasonably assumed to be the result of finite precision

of measurement, it is reasonable to proceed with analysis by ‘‘cheating’’ the

observations slightly away from the boundary, via either of two methods. The

first rescales all observations by a small amount:

ynew ¼
e
2
þ 1� e

2

� �
yold; ð10Þ

for a small e > 0. Larger values of e shrink the data more toward 0.5, and thus, e
should be kept as small as possible. Reasonable choices of e will, of course,

depend on the application. For instance, with a discrete response scale on

f0; 1; . . . ; 100g a reasonable choice might be e ¼ 1=100. The second method

replaces 0 by e > 0 and 1 by 1� e, leaving the other observations unchanged.

Aitchison (2003) discusses the boundary problem in detail, favoring the rescaling

approach due to the fact that it preserves the mean of the data and maintains cer-

tain collapsibility conditions that are unimportant in the present context.

We advise use of sensitivity analysis to ensure that estimates and inference are

not notably affected by the choice of e. One selling point for the beta distribution

as compared to, say, logit-transforming observations and then assuming normality

of the transformed responses is the fact that the log likelihood of the logit-normal

near the boundary is particularly sensitive while the log likelihood of the beta is

less so. In particular, examining the log likelihood of the logit-normal shows that

it contains exponential terms while the beta’s derivatives are algebraic, implying

that small perturbations in the logit-normal are amplified compared to the beta.

2.3. The Mixed Model

It is somewhat unfortunate that the usual terminology distinguishes between

mixed and mixture models as, conceptually, they are essentially the same. In both
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cases, one or more missing independent variables constant within a cluster are

posited to account for dependence among observations in a cluster. Upon condi-

tioning on these variables and observed explanatory variables, the observations

are assumed independent. Beta regression in the independent case states that,

conditional on the regressors X;V, the response variable is distributed beta. The

mixed model extension asserts that, conditional on the regressors and the addi-

tional missing information, the response variable is distributed beta. We develop

the two-level model equations here for general location and dispersion link func-

tions gð�Þ and hð�Þ, respectively, assuming balanced data for simplicity, that is,

equal numbers of observations within each cluster. The general principles carry

over to higher level structures and unbalanced data.

We follow the basic scheme given in McCulloch, Searle, and Neuhaus (2009,

chap. 8), which we take as a basic reference. Pinheiro and Chao (2006) provide a

very useful summary of the estimation theory for mixed location models. Much

less is known about estimation of dispersion mixtures or location/dispersion mix-

tures. The discussion found in Johnson (2003), where a mixed location/dispersion

model was considered for discrete ordinal variables is helpful. Proactive Monte

Carlo simulation of models that are likely to be used in a given study may be useful

if one is in doubt about estimation properties (Steiger, 2001). To do this, simply

generate replicated data sets using a random number generator and estimate the

desired model on these replications.

Let i ¼ 1; . . . ; I index subjects and j ¼ 1; . . . ; JðiÞ index observations within

the ith subject. For simplicity of presentation here we assume that JðiÞ ¼ J ; that

is, each subject has exactly the same number of responses, so there are IJ ¼ N

total observations. Consider four matrices of regressors, X;Z;V;W. X and V are

as previously. Z and W are the regressors for random effects b and d, respec-

tively. Then

g�1ðmijÞ ¼ xij�þ zijb; ð11Þ

h�1ðfijÞ ¼ vij�þ wijd: ð12Þ

We do not assume that b is independent of d, though this may often be sensible in

practice. Denote this joint distribution as qðb; dÞ: In this article, we will use either

multivariate normal or multinomial mixing distributions or a combination of

multivariate normal and multinomial. The likelihood function is

Lð�; �; b; d; y;X;V;Z;WÞ ¼
YI

i¼1

YJ

j¼1

f yij; mij;fijÞ
� �

: ð13Þ

Unfortunately, as is well known, it is not possible to estimate b̂ or d̂ directly in a

statistically consistent manner. Instead, it is usual to integrate out the random

effects by averaging over the random parameters (here, the integral sign should

be understood as either a continuous integral or finite sum, as the case may be):
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Lð�; �; y;X;VÞ ¼
YI

i¼1

ð
B�D

YJ

j¼1

f fijmij;fijð1� mijÞ
� �

qðb; dÞdbdd: ð14Þ

Strategies for doing this are much the same for nearly any GLMM, as shown in

Pinheiro and Chao (2006). In this article we use Gauss-Hermite quadrature, lead-

ing to the marginal maximum likelihood (MML) solution, and fully Bayesian

estimation, which uses MCMC through the Gibbs sampler to approximate the

appropriate integrals. The GLIMMIX procedure in SAS implements the pena-

lized quasi-likelihood approach for a location-only model (SAS Institute,

2008). This approach approximates the integrals for a multivariate normal mix-

ing distribution by a particular Taylor series expansion. The penalized quasi-

likelihood approach has yet to be thoroughly studied. It is relatively fast and can

accommodate larger numbers of random effects than Gauss-Hermite quadrature.

However, the properties it exhibits for categorical data seem to be present in deal-

ing with beta-distributed variables, namely, that it is biased when the random

effects are relatively large. We do not consider it further here. For the data sets

we have considered, ranging between a few hundred and a few thousand obser-

vations with between one and seven random effects, MML and MCMC seem to

perform as expected from other GLMM contexts. MML by quadrature works for

between one and three random effects and we have obtained sensible estimates

from MCMC estimation for up to seven random effects in a not unreasonable

amount of time (i.e., minutes to hours).

An important special case is the finite mixture model, which asserts that, con-

ditional on regressors X;V, the response variable is distributed as a finite

weighted sum of C beta random variables:

yjX;V �
XC

c¼1

gc fc yð Þ; ð15Þ

where 0 � gc � 1,
P

c gc ¼ 1, and

fc yð Þ ¼ Beta fc Vð Þmc Xð Þ;fc Vð Þ 1� mc Xð Þð Þð Þ: ð16Þ

The gc, in turn, may also have a submodel with its own regressors Q. For

c < C,

log
gic

giC

� �
¼ qi Zc : ð17Þ

Both MLE and Bayesian estimation methods may be used for this model,

subject to the caveats mentioned earlier. Smithson, Merkle, and Verkuilen

(2009) explore mixture models in more depth and present examples of their

application.
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2.4. Remarks on Estimation

We now offer some remarks on the two estimation strategies used in this

article in the context of mixed and mixture models. First, we discuss issues that

are common to both methods and then remark on aspects that apply to each

individually.

Estimation of a GLMM is markedly more complex than in the independent

observations case. In particular, conditions guaranteeing global concavity of the

log likelihood do not hold here, and it is crucial to get good starting values.

Because numerical optimization algorithms are only locally convergent, having

good starting values greatly speeds estimation. Similarly, for MCMC, starting

too far from the region of high posterior density will slow convergence. We have

found that estimating a sequence of simpler models and feeding previous param-

eter estimates into later estimations greatly facilitates the fitting process. For

instance, a fixed effects model with no random components should provide

decent starting values for the fixed effects in a mixed model and a simplified ran-

dom effects only model often provides a good guess for the mixing components.

Even providing the correct signs of the coefficients will help convergence. The

other area where estimation can go awry for the beta is in the matter of the log-

gamma function and its derivatives near 0. These functions will underflow for

argument values of approximately 1� 10�8, which can be obtained for very

small values of f or whenever m � 0 or m � 1. Users programming their own

routines need to be sure to properly scale their independent variables (e.g., by

standardizing all of them to have mean 0 and variance 1) and bound predicted

values away from such values.

MML estimation involves using a double iteration to fit the models, alternat-

ing between a quadrature step (using Gaussian quadrature) to integrate out the

random effects and an optimization step to update the fixed effect parameters

of the marginal likelihood. This process is computationally intensive. It is incum-

bent on the user to make a careful choice of the number of quadrature nodes and to

have good starting values for model parameters. Adaptive Gaussian quadrature is

slower (often much slower) but more accurate and requires fewer quadrature

nodes. Ensuring that the solution is not sensitive to the number of quadrature nodes

by manually varying that number is highly advisable. In our experience, beta

regression seems to require more quadrature nodes than, say, logistic regression,

which is perhaps unsurprising because the likelihood function is more complex

than for the Bernoulli. The only other major area of trouble is when the maximum

of the log-likelihood function is near a degeneracy. In this case, the Hessian will be

poorly conditioned and optimization will usually fail (MCMC usually exhibits

poor mixing in this case as well). Developing a regularization strategy for MML,

for example, by adding a small number of pseudo-observations to shrink the like-

lihood toward a relevant null model and smooth the log likelihood, would consti-

tute a useful research topic.
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MCMC estimation generally performs well, both in successfully estimating

complex models and in accuracy and interval coverage. Our conclusions regard-

ing the strengths and weaknesses of this approach are largely in line with Browne

and Draper’s (2006) comparisons with likelihood and quasi-likelihood

approaches. For medium to large random effects and moderate to large samples,

Bayesian MCMC estimates and interval coverage seem to be reasonably well

behaved. In particular, MCMC interval coverage fidelity appears superior to that

provided by asymptotic Gaussian confidence intervals. MCMC estimates also are

less biased than the quasi-likelihood ones (especially regarding variance compo-

nents). Furthermore, in our experience MCMC often can successfully estimate

complex models where likelihood-based approaches fail or are intractable, par-

ticularly when the number of random effects is larger than 3.

However, MCMC interval coverage fidelity is not well studied for small-to-

medium samples in non-Gaussian random effects or hierarchical models. Browne

and Draper (2006) found that undercoverage in logistic random-effects models

could be corrected for by using appropriate posterior summary measures, but

as they point out this is not a satisfactory solution. Likewise, MCMC may not

perform as well for models in which random effects are small, but in general nei-

ther does any other known method. Finally, large data sets, models with many

parameters, or models that yield full conditional distributions that are not log-

concave can cause MCMC to be time-consuming, although this is likely to

become less of an issue as computing power increases.

It has been widely noted that the choice of priors for variance parameters in

random effects models can be problematic. We recommend avoiding the use of

improper priors and evaluating the effects of choosing alternative ‘‘nonin-

formative’’ priors even when they are proper, for reasons summarized by

Congdon (2003, p. 21). Of course it may be reasonable to use an informative

prior for substantive and/or technical reasons. See Chen, Ibrahim, Shao, and

Weiss (2003) for recent investigations regarding informative priors for

GLMMs. In the analyses reported here, we adopted two commonly recom-

mended priors for variance parameters: A uniform prior for s2 on ð0; 1=eÞ
(e.g., Gelman & Rubin, 1992), and a Gammaðe; eÞ prior for 1=s2, where e is a

small positive number. We found very little difference between results using

either of these priors in the examples presented here, but both Browne and Draper

(2006) and Gelman (2006) provide useful criticisms and alternatives regarding

the effects of using these priors for small sample sizes. At present the only reli-

able check is sensitivity analysis.

2.5. Goodness of Fit and Model Checking

A full explication of model evaluation, model checking, and model compar-

ison for beta GLMMs is beyond the scope of this article. These topics raise some

open questions in the GLMM literature generally. We briefly review the
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available tools for evaluating and comparing beta GLMs and indicate unresolved

issues. We also address some of these issues in the examples.

Global model comparison may be achieved using well-known measures such

as the Akaike Information Criterion (AIC), Bayesian Information Criterion

(BIC), and Deviance Information Criterion (DIC). These measures are all essen-

tially attempts to estimate relative Kullback-Liebler divergence based on the

optimized log likelihood and a penalty term representing model complexity. For

MML, comparative measures of fit based on the likelihood (e.g., AIC and BIC)

and the log-likelihood chi-square test for comparing nested models all are appli-

cable. For Bayesian modelers, the posterior log likelihoods and DIC may be used.

These measures are all subject to the usual caveats that apply in other contexts

and we emphasize that they are best used in a comparative fashion. One partic-

ular warning that applies to users of beta regression is that all integration con-

stants need to be included in the computation of these measures when they are

used to compare across distributions (Pawitan, 2001).

Model evaluation and checking involve two related issues: How well the

model ‘‘predicts’’ the data and whether there are unduly influential observations

(e.g., outliers). The first issue may be dealt with via simulations from the poster-

ior predictive density. Typically the match between the replicated and actual data

is evaluated by comparing their cumulative relative frequencies. A similar

approach can be used in MML as each point predicts a density, conditional on

the regressors and parameter estimates. The main idea is generating replicated

data by predicting mij and fij and then examining the resulting beta density.

Lack of a deviance or an appropriate residual is an undesirable feature of the

beta GLMM. Clearly, the usual notion of a standardized residual is not adequate

even for beta GLMs, because these models typically are heteroscedastic. Ferrari

and Cribari-Neto (2004) proposed a deviance residual for the beta GLM, but

Epsinheira et al. (2008a) found this residual to be inaccurate, particularly when

the location submodel estimates are close to 0 or 1. Epsinheira et al. propose and

evaluate two residuals based on the Fisher scoring algorithm. Epsinheira et al.

(2008b) develop a Cook-like distance measure of the influence of deleted obser-

vations on parameter estimates. The Bayesian tools for influence diagnostics

include the conditional predictive ordinate (CPO; Weiss & Cho, 1998), which

is readily applicable to beta GLMMs and probably is the most well-established

option for these models. This method is essentially an approximation to the jack-

knife and, more broadly, deletion of suspect observations (or blocks of them) pro-

vides a useful means to diagnose models. Longford (2001) proposes a similar

approach in a likelihood context, using the parametric bootstrap to simulate the

distribution of residuals at various levels in a multilevel model. An algorithm

such as Atkinson’s forward search seems promising in this context (Atkinson,

1994). The principal disadvantage of approaches such as the CPO, parametric

bootstrap, or forward search is, of course, computational intensity. Ntzoufras

(2009) provides CPO code in WinBUGS.
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3. A Simulation Study

To demonstrate the basic properties of mixed beta regression, we have per-

formed parameter recovery simulation studies, one of whose results we show

here. The simulated data and code are available from the authors. The study in

question had 100 replications of N ¼ 100 subjects and J ¼ 4 items per subject.

The items had means and precisions given in Table 1 and were mixed by subject

with a Gaussian random intercept in the location submodel. It should be noted

that these items have markedly non-Gaussian marginal densities: Given the con-

figuration of the parameters, the first item is left skewed and exhibits mild

bimodality, the middle two items are uniform, and the third item is right skewed.

The resulting model equations are

log
mij

1� mij

 !
¼ βj þ bi; ð18Þ

log fij

� �
¼ dj; ð19Þ

bi �i:i:d Nð0;s2Þ: ð20Þ

The true values of the parameters are given in Table 1.

This model is quite similar to several commonly employed in the behavioral

sciences, including unidimensional item response theory models or those for

repeated measures experiments. We fit the model in many different ways but

report the results from two runs, one using MML estimation and the other using

Bayesian MCMC estimation. Given good starting values, MML convergence is

TABLE 1

Results of the 4 � 1 Simulation Study

Inv. Link Link

Parameter True MML Bayes True MML Bayes

β1
�1.39 �1.300 (0.150) �1.288 (0.151) 0.2 0.210 (0.025) 0.217 (0.026)

β2
0 0.010 (0.100) 0.009 (0.105) 0.5 0.500 (0.026) 0.502 (0.026)

β3
0 �0.010 (0.110) �0.007 (0.113) 0.5 0.500 (0.028) 0.498 (0.028)

β4
1.39 1.370 (0.130) 1.359 (0.130) 0.8 0.800 (0.021) 0.795 (0.021)

d1 0 0.160 (0.160) 0.153 (0.156) 1 1.180 (0.190) 1.180 (0.188)

d2 0.69 0.680 (0.130) 0.669 (0.130) 2 1.980 (0.250) 1.968 (0.255)

d3 0.69 0.680 (0.120) 0.675 (0.117) 2 1.990 (0.240) 1.978 (0.233)

d4 1.1 1.100 (0.130) 1.094 (0.129) 3 3.030 (0.380) 3.010 (0.382)

s 0.5 0.430 (0.100) 0.412 (0.111)

Note: MML ¼ marginal maximum likelihood.
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rapid, each replication taking under 30 seconds to run on a 2.4 GHz Intel Core 2

Duo with 2 GB of RAM running Windows XP Pro using SAS 9.1.3 NLMIXED

(SAS Institute, 2006). Simulation studies with MCMC are slower, but each run

took no more than 5 minutes to converge running winBUGS 1.4.3 (Spiegelhalter,

Thomas, Best, & Lunn, 2004) on a similar machine.

As can be seen in the table, the parameters are nearly unbiased even for this

relatively modest sample, though of course inside the link they are more biased

(Pawitan, 2001). Further examination shows that all parameters both inside the

link and as linear predictors have reasonably symmetric distributions; location

parameters are better approximated by a Gaussian than dispersion parameters but

the skew exhibited for the latter is quite mild. The only parameter that exhibits

any sort of downward bias and nonnormality is s, although its true value is still

within the standard error of estimate. With more observations at Level 2, this bias

is alleviated. The random effects are recovered adequately—corðbi; b̂iÞ ¼ 0:63—

at least as well as one would expect from only four observations per subject. As

one would expect, a substantial amount of shrinkage is observed, as can be seen

from ŝ. This shrinkage is alleviated by a larger sample at Level 2, that is, by more

items, exactly as expected. In short, mixed beta regression has statistical proper-

ties fairly similar to other generalized linear mixed models that have been exten-

sively studied over the last 10 years.

3.1. Partitioning the Variance

One common issue in GLMMs involves partitioning the variance into that

due to different levels in the model. For instance, in a two-level model with a

random interecept, what proportion of the variation in the dependent variable

is attributable to fixed effects, unexplained Level 1 variability and the Level 2

variability accounted for by the random intercept? This was discussed quite

thoroughly by Goldstein and colleagues (Browne, Subramanian, Jones, &

Goldstein, 2005; Goldstein, Browne, & Rasbash, 2002) in the context of

mixed binary regression. In particular, in a linear mixed model, the question

is much more straightforward to answer than in a nonlinear model such as

mixed beta regression. Mixed beta regression suffers the same problems as

mixed binary regression regarding the impact of nonlinearity. In particular,

because the variance is a function of the mean, it is not possible to compute

straightforward quantities such as the intraclass correlation frequently used

in a mixed model context to measure the proportion of dependence at the clus-

ter level.

We have adapted the methods they proposed, which we illustrate here. The

approximation method, as explained in Goldstein et al. (2002), uses a first-

order Taylor expansion of the link function at the mean of the distribution of the

appropriate random effects. Browne et al. (2005) extend their approach to mixed

models with more than two levels. We adapt their approach for the logistic link
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by incorporating the dispersion effect parameter f. We then illustrate both

methods using one of the random samples from the 1� 4 simulated data.

We start with an estimated location submodel

mij ¼
exp

P
k

βkxijk þ bi

� �

1þ exp
P
k

βkxijk þ bi

� � ð21Þ

with bi � Nð0;s2
uÞ and dispersion submodel f ¼ expð�d0Þ. The Level 1 var-

iance is

s2
mj
¼

1� mðjÞ
� �

mðjÞ

fþ 1
; ð22Þ

where mð jÞ denotes the predicted value for a combination of xj values.

In a two-level model, following Goldstein et al.’s (2002) first-order Taylor

expansion of the location submodel, our adaptation of their formulation yields

the following approximate estimate of the Level 2 variance,

s2
uðjÞ
¼ exp �2

XJ

j¼1

xjβj

 !
m2
ðjÞs

2
u ð23Þ

for any given combination of xj values. Finally, the approximate variance

partition coefficient (VPC, the proportion of variation accounted for at Level

2) is

tj �
s2

bðjÞ

s2
bðjÞ
þ s2

mj

: ð24Þ

The simulation approach includes the following steps:

1. We start with an estimated location submodel.

2. Generate a large number (say, M ¼ 5;000) of random Level 2 residual values

bm � Nð0;s2
bÞ, for m from 1 to M.

3. Select one or more appropriate combinations of values for the covariates xj. For

each such combination, use sample estimates of the relevant parameters to

compute M predicted values

mmðjÞ ¼
exp

P
k

βkxjk þ bm

� �

1þ exp
P

k

βkxjk þ bm

� � : ð25Þ

In our 1� 4 example, we do this for each of the four combinations of 0–1 values

for the dummy xjk variables.
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4. Compute the variance s2
bðjÞ of the mmðjÞ.

5. Compute s2
uj

.
6. The approximate VPC is tj.

The approximation method is illustrated here; a similar demonstration of the

simulation method is available from the authors. In our sample of 100 observa-

tions from our repeated-measures simulation, the sample means are mð1Þ ¼ :1807,

mð2Þ ¼ :5136, mð3Þ ¼ :5106, and mð4Þ ¼ :7974. The sample fðjÞ are fð1Þ ¼ 1:438,

fð2Þ ¼ 2:019, fð3Þ ¼ 1:770, and fð4Þ ¼ 2:787. Finally, the sample s2
u ¼ 0:3067.

The Level 1 variances are shown in the upper row of Table 2. For example,

s2
m1
¼ mð1Þð1� mð1ÞÞ=ðfð1Þ þ 1Þ ¼ 0:0607. The Level 2 variances for the approx-

imation method are listed in the row beneath the Level 1 variances. For instance,

s2
uð1Þ
¼

m2
ð1Þs

2
u

1� mð1Þ
� �

mð1Þ þ 1
� �2

¼ :0067:

The VPC results are shown in the lower part of Table 2, for both the approxima-

tion and the simulation (from a typical simulation run) methods. They are reason-

ably close, with the simulation method returning a somewhat lower VPC for the

second and third categories than the approximation method does. In either case,

the VPC magnitudes reflect moderate clustering due to Level 2 effects, as can be

seen from the tj magnitudes which range from about .10 to .19.

4. Applications

We provide three real examples of mixed or mixture beta regressions using

data from several cognitive experiments. The first example shows a mixture

model applied to judged probabilities elicited in an experiment by Gurr

TABLE 2

Approximation and Simulation Method VPC Results

s2
m1

s2
m2

s2
m3

s2
m4

0.0607 0.0827 0.0902 0.0427

s2
mð1Þ

s2
mð2Þ

s2
mð3Þ

s2
mð4Þ

Approximation 0.0067 0.0191 0.0192 0.0080

Simulation 0.0072 0.0165 0.0165 0.0081

t1 t2 t3 t4

Approximation 0.0997 0.1879 0.1751 0.1580

Simulation 0.1060 0.1666 0.1550 0.1604
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(2009). It demonstrates the performance of a finite mixture of betas in a relatively

simple setting. The second example is a more complicated reanalysis of judged

probability data from Fox and Rottensreich (2006). This example illustrates the

fact that modeling the dispersion structure often leads to different conclusions

than modeling location alone, more in line with theoretical expectations. The

third example considers numerical confidence ratings taken from Roy and

Liersch (2009). This model includes both location and dispersion submodel ran-

dom effects.

4.1. Partition Effects on Probability Judgments by a Finite Mixture Model

On grounds of insufficient reason, a probability of 1=K is assigned to K

mutually exclusive possible events when nothing is known about the likelihood

of those events. Fox and Rottenstreich (2003) found evidence that subjective

probability judgments are typically biased toward this distribution. Smithson and

Segale (2009) extended the study of partition effects to judgments of lower and

upper probabilities and introduced a beta regression mixture modeling approach

to analyzing this influence.

Gurr (2009) investigated partition priming effects by setting up an ambiguous

sample space and introducing an experimental manipulation to influence percep-

tions of this space. One hundred fifty-five undergraduate students at The Austra-

lian National University (108 females, 43 males, and 4 unspecified) were

recruited for his study. Their ages ranged from 17 to 43 years (M ¼ 21:41,

SD ¼ 4:46). The participants completed two probability judgment tasks. The

first task was a ‘‘no-information’’ condition and participants were told that ‘‘In

this block you will be asked to make decisions with very little information. A

man, Geoff, works as an engineer in a big hydraulic power production firm.

Geoff has three acquaintances, Pat, James and Chris.’’ They were then asked

to assign probabilities to the three acquaintances being hydraulic power engi-

neers in Geoffs firm. The second ‘‘information’’ condition repeated the task but

provided information about each acquaintances engineering qualifications.

The resultant sample space is ambiguous because the number of positions

available in Geoff’s firm and the number of potential applicants to those posi-

tions are not specified. The hypothesis associated with this part of the study was

that participants would be more likely to return ‘‘ignorance’’ priors (i.e., assign-

ing equal probabilities to all three targets) under the no-information condition. In

particular, it was expected that the no-information condition would elicit more

ignorance priors comprising probabilities of 1/2 for each target, by virtue of par-

ticipants thinking in terms of a two-alternative sample space for each target.

Participants also were randomly assigned to one of two priming conditions,

one asking them which applicant was most likely to get a position in Geoff’s firm

(the comparison prime) before they were asked for their probability assignments

and the other not asking this question. The major hypothesis for this aspect of the

Mixed and Mixture Regression Models

16

 at Australian National University on June 11, 2011http://jebs.aera.netDownloaded from 

http://jebs.aera.net


experiment was that the comparison prime would make participants more likely

to make their probabilities additive (i.e., summing to 1 across the three targets)

because it would cue them to think that there might be only one position avail-

able. The provision of three targets enables a distinction between judges express-

ing ignorance by assigning probabilities of 1/2 to all three targets and who

express ignorance by assigning 1/3 to all targets, whereas using only two targets

would conflate additivity with ignorance prior assignments.

Initially, probability assignments in the two tasks were analysed separately

using mixture beta-regression models via MLE methods, using SAS 9.2 and IBM

SPSS Statistics 18 (IBM SPSS results are reported here). No-effects models were

determined by comparing model fit for a single-distribution, two-component, and

three-component mixture models. All two-component mixture models fixed one

component distribution’s mean either at 1/2 or 1/3 while freeing the other mean

to be estimated, and the three-component model fixed two component means at

1/2 and 1/3 while freeing the third component mean to be estimated. The fixed-

means component distributions were modeled by fcðyÞ ¼ Uniform

ðmc � e; mc þ eÞ, with e given values of .001, .01, and .05. We report findings for

e ¼ :01, as the other values yielded similar results.

Beginning with the no-information condition task, both two-component mix-

ture models (one with a component mean fixed at 1/2 and the other fixed at 1/3)

outperform the single-distribution model, difference in log-likelihood chi-

squares: w2ð1Þ ¼ 108:08, p < :0005; and w2ð1Þ ¼ 50:48, p < :0005, respec-

tively, and a three-component model (with two-component means fixed at 1/2 and

1/3) outperforms the best of the two-component models, w2ð1Þ ¼ 135:66,

p < :0005. Turning to the information condition, both two-component mixture

models (one with a component mean fixed at 1/2 and the other fixed at 1/3) out-

perform the single-distribution model, difference in log-likelihood chi-squares:

w2ð1Þ ¼ 29:75, p < :0005, and w2ð1Þ ¼ 102:09, p < :0005, respectively and a

three-component model (with two component means fixed at 1/2 and 1/3) outper-

forms the best of the two-component models, w2ð1Þ ¼ 26:62, p < :0005. The

three-component model therefore is adopted for both the no-information and

information tasks. The distributions for both tasks under the two experimental

conditions are shown in Figure 1.

A mixed three-component mixture model was estimated in WinBUGs 1.4.3 to

assess the joint effects of the prime and the no-information versus information

conditions. This model is limited to a random intercept in the location submodel,

due to there being only two data points per participant. The location submodel is

m1j ¼ 1=2;

m2j ¼ 1=3;

g m3ji

� �
¼ β0j þ bi; ð26Þ
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where bi � Nð0;s2
bÞ. The dispersion submodel is

h fcj

� �
¼ dcj; ð27Þ

dcj � N mdcj;s
2
dcj

� �
:

For j ¼ 1 and 2, we used informative priors to simulate compressed component

distributions centered at 1/2 and 1/3, whereas for j ¼ 3; we used a noninforma-

tive prior. Finally, the composition submodel is

log g1ji=g3ji

� �
¼ Z10j þ Z11jqi

log g2ji=g3ji

� �
¼ Z20j þ Z21jqi ð28Þ

g3ji ¼ 1� g1ji � g2ji;

where qi ¼ 0 for the no-prime condition and 1 for the prime.

We used a two-chain model with a 10,000 iteration burn-in and estimates

based on the subsequent 10,000 iterations. The parameter estimates, standard

errors, and 95% credible intervals are shown in Table 3. The priming effect on

FIGURE 1. Component distributions for prime by information conditions.

Mixed and Mixture Regression Models

18

 at Australian National University on June 11, 2011http://jebs.aera.netDownloaded from 

http://jebs.aera.net


relative composition is similar in both conditions, as can be seen from the

credible intervals for Z112 � Z111 and Z212 � Z211. The large positive Z111 and

Z112 values suggest that the presence of the comparison prime increases the pro-

portion of additive responses (i.e., those summing to 1). However, the small Z211

and Z212 values indicate that it has no discernible impact on the proportion of

responses centered on 1/2. On the other hand, the large negative Z202 � Z201 dif-

ference suggests that the no-information condition increases the proportion of

responses summing to 1/2, whereas the weak Z102 � Z101 difference shows that

it has little or no effect on the proportion of additive responses. Thus, both of the

aforementioned hypotheses received some support.

The estimated and observed proportions are shown in Table 4. There is a slight

tendency to underestimate the proportions of additive responses in the no-prime

TABLE 3

Beta-Regression Mixture Models for Gurr (2009) Study

Credible Interval

Parameter M SD Lower Upper

Location

β01 �0.330 0.129 �0.570 �0.065

β02 �0.109 0.107 �0.307 0.100

sb 1.002 0.087 0.840 1.180

Dispersion

d11 8.737 0.352 8.037 9.402

d12 6.980 0.522 6.120 8.180

d21 16.800 0.318 16.170 17.410

d22 15.900 0.316 15.270 16.510

d31 2.550 0.303 1.972 3.165

d32 3.092 0.280 2.568 3.643

Compos.

Z101 �1.409 0.381 �2.233 �0.731

Z102 �1.782 0.488 �2.864 �0.973

Z201 �0.640 0.261 �1.169 �0.143

Z202 �1.567 0.327 �2.238 �0.968

Z111 1.645 0.455 0.803 2.579

Z112 1.329 0.571 0.304 2.557

Z211 �0.176 0.425 �1.005 0.647

Z212 �0.505 0.565 �1.674 0.588

Z102 � Z101 �0.373 0.615 �1.642 0.788

Z202 � Z201 �0.927 0.417 �1.756 �0.132

Z112 � Z111 �0.315 0.731 �1.702 1.169

Z212 � Z211 �0.328 0.710 �1.749 1.072
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condition and to overestimate them in the prime condition for the

information-condition task, but otherwise the composition structure is recovered

well. Of the 310 mean component classification scores produced by the MCMC

run, 288 (92.9%) of these were within 0.1 of their correct classification, so the

model correctly assigned most cases to a component distribution.

4.2. Dispersion Modeling to Address Response Style in Judged Probabilities

See, Fox, and Rottenstreich (2006) presented a series of studies of the influ-

ence that the number of possibilities (the state-space partition) has on judged

probabilities. In their Study 1, participants observed a set of randomly ordered

restaurant receipts for various meals on various days by a person named ‘‘Joe.’’

The receipts contained two pieces of information: day of the week (Sunday,

Monday, . . . , Saturday) and meal category (breakfast, lunch, and dinner). Parti-

cipants were told they would be asked to judge the likelihood of the events they

had observed. See et al.’s primary hypothesis was that subjective probability

estimates would be biased toward the ignorance prior suggested by the target

attribute’s partition: meal of the day (three alternatives, therefore an ignorance

prior of 1/3) or day of the week (1/7). Following the learning phase, 267 partici-

pants were asked to estimate the likelihoods of all 10 attributes (meal categories

and days of the week). One peculiarity of their data is the substantial number of

exact boundary observations, particularly concentrated in certain participants.

These values needed to be adjusted slightly. In our analysis here, we replaced

exact 0 values (12 in all) with 0.001 and exact 1 (5 in all) with 0.999. The exact

1 responses are particularly important because these are highly unlikely

responses given the stochastic specification of the model.

To assess the relative influence of the partition and the information provided

during the learning phase, See et al. conducted separate regression analyses for

each participant. Their model was derived from Fox and Rottenstreich’s

(2003) ignorance prior model, which can be written as follows:

TABLE 4

Recovery of Mixture Composition Structure

Component Estimated Observed Estimated Observed

Condition Mean No Prime No Prime Prime Prime

1/3 0.138 0.156 0.468 0.470

No-info 1/2 0.298 0.299 0.163 0.167

Free 0.564 0.545 0.369 0.359

1/3 0.122 0.143 0.361 0.346

Information 1/2 0.152 0.156 0.072 0.077

Free 0.726 0.701 0.568 0.577
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log
pij

1� pij

� �
¼ β0i þ β1ilog

nfj

naj

� �
þ β2ilog

Ffj

Faj

� �
; ð29Þ

where pij is the probability of the jth target judged by the ith subject, nfj and naj

are the number of distinct states that the jth focal target and its alternatives,

respectively, can take on (i.e., 1 and 2 for meals and 1 and 6 for days of the week),

and Ffj and Faj are the frequencies with which the jth focal target and its alterna-

tives appeared during the learning phase. They reported the median intercept

(�0.13), regression coefficients (β̂1 ¼ :36 and β̂2 ¼ :46), and multiple R2 (.61)

for these regressions.

One obvious weakness with this analysis is the fact that each participant only pro-

vides 10 observations, which means each individual-level regression only has six

degrees of freedom. We reanalyzed their data using a beta GLMM approach.

All models shown here were fit using WinBUGs 1.4.3. We ran two-chain models

with a burn-in of 5,000 iterations and an additional 10,000 iterations for estimation

purposes. (MML was also attempted. The final Hessian was singular but coefficient

estimates were very close to those from MCMC.) In these models, i indexes subjects,

j indexes stimuli, and k indexes dependent variables including the intercept. In

line with convention, when k ¼ 0, xij0 ¼ 1 and β0 ¼ intercept. We began with

a model incorporating a random intercept in the location submodel (Model 0):

pij � Betaðmijfij; ð1� mijÞfijÞ; ð30Þ

log
mij

1� mij

 !
¼
X

k

βkxijk þ bi; ð31Þ

logðfijÞ ¼ d0; ð32Þ

where βk � Nðmβk
;s2

βk
Þ, bi � Nð0;s2Þ, and d0 � Nðd;s2

dÞ. We then estimated a

model with random bk and independent random-effects terms (Model 1), so that

the right-hand side of Equation 33 is replaced with
P
k

βk þ bikð Þxijk , where

bik � Nð0;s2
kÞ, and a model with correlated random-effects (Model 2), in which

bik � Nð0;s2
kÞ is replaced with bi � N

�
0;�

�
.

Table 4 shows the posterior mean �2log L figures for the three models,

indicating clear gains in model fit for each of them. That said, the location and

dispersion fixed-effects submodels were nearly unchanged in these three

models. The Model 2 estimates and 95% credibility intervals are β̂0 ¼ �0:193;

½�0:259;�0:130�; β̂1 ¼ 0:233; ½0:161; 0:303�; β̂2 ¼ 0:502; ½0:449; 0:555�; and

d̂0 ¼ �2:886; ½�2:944;�2:827�. These results show a somewhat different pic-

ture from See et al.’s median regression coefficients, suggesting a greater influ-

ence from the learning component and a lesser one from the partition.
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Other models are possible. One obvious alternative is a model that

incorporates a random intercept in the dispersion submodel instead of one in the

location submodel. Including random intercepts in both submodels resulted in mod-

els that failed to converge in WinBUGS. However, a model with a random intercept

in the dispersion submodel alone converged well. Moreover, it considerably outper-

formed all of the models presented thus far (posterior mean�2log L ¼ �5783:86).

More importantly, this model yields a somewhat different location submodel

from the other approach. The model estimates and 95% credibility intervals are

β̂0 ¼ �0:149; ½�0:198;�0:101�; β̂1 ¼ 0:395; ½0:339; 0:444�; β̂2 ¼ 0:403;½0:366;

0:438�; and d̂0 ¼ �3:012; ½�3:130;�2:896�. These results suggest that the parti-

tion effect is nearly equal to the effect of the information provided in the learning

phase, more in line with See et al.’s findings.

What, then, does the dispersion random effect mean here? If one examines

the raw data as well as d̂, it appears that it essentially addresses systematic dif-

ferences in response style away from the primed anchors. A location random

effect here would mean that participants systematically anchored off the primes.

There seems to be no evidence for this in these data, which is unsurprising given

the theory.

See et al. (2006) also collected confidence judgements and knowledge

judgments to measure how knowledgable their subjects were. The motivation

behind this was that more knowledgeable subjects might be less susceptible

to priming effects. A subject-level knowledgeability covariate could be incor-

porated into a more elaborate model, with a cross-level knowledgeability-

by-partition interaction term to ascertain whether greater knowledgeability

lessens the partition effect.

As a comparison and more in line with the original analysis, we also attempted

to fit logit-normal mixed models by transforming the dependent variable and

assuming it is normal. These models exhibited substantial sensitivity to the

choice of e, the shrinkage parameter in Equation 11. In particular, the variance

of the random effect was pulled substantially by choice of e. This is, no doubt,

because the usage of boundary values varies drastically within participants.

4.3. Location and Scale Mixing: Numerical Confidence Ratings

The data used for this example come from Roy and Liersch (2009), who con-

sidered the ‘‘better than average’’ effect, also known as the Lake Wobegon

Effect, the well-known finding that more than 50% of subjects are willing to rate

themselves as being better than average, impossible in a symmetric distribution

(e.g., Alicke & Govorun, 2005). The participants are 35 female undergraduates at

a large Midwestern university (an additional 20 male participants were dropped

from the analysis here to avoid dealing with a substantial gender by skill inter-

action). They provided numerical confidence ratings (on a scale of 0–100) of

their ability to perform ten skills: riding a bike (bke), dancing (dnc), driving a car
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(drv), sensing emotion (emo), karate (kte), performing magic tricks (mag), musi-

cal performance (mus), speaking in public (spk), playing ‘‘ball’’ sports (spt), and

tying a shoe (sho).

These skills are expected to have substantially varying difficulties in the study

population—for instance, karate and magic are both expected to be difficult

while tying shoes is expected to be easy. The experimenters hoped to see if par-

ticipants would rate themselves as being worse than average on difficult skills

and better on easy skills, which would imply substantially skewed responses,

both left and right skewed, as difficulty varied. Of course, it would not be surpris-

ing for there to be substantial differences in response style in these data, in loca-

tion, dispersion, or both, much like what was observed for the judged

probabilities in the previous example. A location difference indicates a systema-

tic anchor point of ‘‘generalized perceived self-competency’’ for a given partici-

pant while a dispersion difference indicates how spread a given participant’s

responses are around that. Box plots of the ratings are shown in Figure 2.

We rescaled the response to lie inside the unit interval by letting

y ¼ :0025þ :9975 	 ðyraw=100Þ:

FIGURE 2. Roy and Liersch (2009) confidence ratings for 35 female participants.
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As can be seen, the distributions are substantially skewed (particularly for the

harder skills) and are overdispersed relative to the beta conditional on skill alone.

There are some notable outliers, particularly for the difficult skills such as karate

and magic, about which more below. The full specification will be given; simpler

versions are devised by restricting one or more parameters to 0. Let i ¼ 1; . . . ; 55

index subjects and j ¼ 1; . . . ; 10 index skills. We assume that observed response

yij is beta-distributed conditional on skill and random effects; that is,

yijjskillj; bi; di � Betaðfijmij;fijð1� mijÞÞ; ð33Þ

where

gðmijÞ ¼ βj 	 skillj þ bi; ð34Þ

hðfijÞ ¼ dj 	 skillj þ di: ð35Þ

The random effects are multivariate normal; that is,

b

d

� �
� MVN 0;�ð Þ: ð36Þ

For the unrestricted model, � is unstructured. Imposing covðb; dÞ ¼ 0 would

force the random effects to be independent and of course setting a variance term

to 0 in effect drops the term from the model. We use the logit-exponential links

and in this case no column of 1s is used for the design matrices. In sum, the mod-

els fit here posit separate beta distributions for each skill, possibly mixed in both

location and dispersion.

We consider four different models for these data. The first model fits only

fixed location and dispersion effects for skills with no random effects. The sec-

ond model considers a location random effect only. The third fits a dispersion

random effect only. The fourth considers random effects for both location and

dispersion, allowing these to be correlated. The parameter estimates shown

here are from the MML estimation but MCMC estimates are very similar. As

there are many model parameters, we consider only the random effects and fit

statistics for the moment. Examination of the reproduced means for Model 4

shows that it almost exactly recovers the raw data means for each skill (as

indeed do the others). However, as can be seen from the BIC statistics, Models 3

and 4 are quite soundly preferred to the other two, again suggesting substantial

differences among subjects in scale usage. However, Model 4 has some modest

support over Model 3 (and indeed would have more if rbd were constrained to

0), which suggests some location anchoring on the part of subjects. There are

20 fixed effects parameters, which we do not show to conserve space. Model 4

has generally more extreme parameter estimates, as is common in random effects

models.
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All is not well with Model 4, however. To evaluate it in more detail, we

computed the Pearson correlation between m̂ij and yij by skill. These correlations

range between 0.4 and 0.7 for most skills. However, two skills, karate and music,

have correlations that are effectively 0. As is evident in the boxplot, the confi-

dence ratings for karate are extraordinarily dispersed. Many participants rate

their confidence at 0 and the distribution is L-shaped. However, a few partici-

pants rate their karate ability as being very high (perhaps accurately?). Music

performance is not as dispersed but behaves similarly. We speculate that this

effect might be due to the fact that both skills are ones in which some participants

have much more objective information about their ability compared to others,

such as dancing or driving. Switching to a different random effects distribution

might accommodate this overdispersion better (Table 6).

To assess the effect of these outliers on the random effects estimates, we refit

Model 4 omitting karate and music. In this case, the fit statistics are no longer

comparable, but parameter estimates should be similar. The fixed effects are very

similar but given the specification of the model this is to be expected. Examining

ŝb ¼ 0:45, ŝd ¼ 0:81; and r̂bd ¼ 0:22. This is comforting because the random

effects parameters would be more likely to be distorted by the outliers in other

parts of the model, but they are not. By contrast, the logit-normal model parallel

of Model 4 exhibits very poor convergence, even when started from the same

point as the beta model.

TABLE 6

Random Effects Parameter Estimates and Fit Statistics for the Confidence Rating Data

Parameter Model 1 Model 2 Model 3 Model 4

ŝb — 0.37 — 0.34

ŝb — — 0.68 0.70

r̂bd
— — — 0.16

�2log L �193.6 �205.2 �256.0 �266.2

df 20 21 21 23

BIC �122.5 �130.5 �181.3 �184.5

Note: BIC ¼ Bayesian Information Criterion.

TABLE 5

Posterior Mean �2log L for Three Models

�2log L Diff.

Model 2 �5193.08

Model 3 �5337.02 143.94

Model 4 �5474.13 137.11
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5. Discussion and Conclusion

The principal focus of this article has been a GLMM framework for dependent

random variables with conditional beta distributions. In particular, we have

shown that for subjective rating data, a random effects dispersion model is highly

useful in modeling individual heterogeneity in response style. Response style is a

pervasive problem with self-report data such as numerical confidence ratings,

judged probabilities, sliders, and so on, all of which are used quite commonly

by psychologists and other behavioral scientists. While in many cases it is simply

a nuisance behavior, in other cases, response style heterogeneity might be an

important study outcome in its own right, for instance, when group differences

are expected as in attitude polarization (Dolnicar & Grun, 2007). We have seen

in two examples how partition-priming effects on probability judgments are

more accurately described by response-style heterogeneity than by a shift in the

mean response.

This framework may be extended and developed in several ways. We briefly

discuss the following starting points for such developments: Alternative estima-

tion techniques, model diagnostics, special mixture models, alternative link func-

tions, and alternative distributions.

Beginning with estimation methods, at least three major approaches remain to

be explored. This article dealt with MML and Bayesian MCMC techniques but

omitted restricted maximum likelihood (REML), penalized quasi-likelihood

(PQL), and generalized least squares (GLS) approaches. These techniques were

neglected primarily for lack of software tools with which to investigate them. As

mentioned earlier, there is a limited implementation of PQL estimation in the

SAS GLIMMIX procedure. Investigations of REML and GLS await software

developments.

We now turn to extensions of the GLMM itself. Some applications

require ‘‘x0-inflated’’ models, where x0 is a specific value on the unit

interval. The most well-known situation is where x0 ¼ 0 (see Kieschnick &

McCullogh, 2003), and a natural model here is a mixture of a beta random vari-

able and one whose PDF concentrates its entire mass at 0. However, situations

can arise such as the judged probability example (Smithson & Segale, 2009)

in which values near x0 should be included in the ‘‘inflation’’ component

distribution. This component distribution therefore can no longer concentrate all

of its mass at x0, although it will have a small variance. Mixture models with a

component distribution of this kind are notoriously difficult to estimate, and

alternative estimation methods have yet to be fully investigated. One promising

avenue is a Bayesian approach utilizing an informative prior for the inflation

component distribution. Smithson et al. (2009) and Merkle, Verkuilen, and

Smithson (2009) investigate and demonstrate the utility of these models in ana-

lyzing such phenomena as scale response style, ‘‘nice number’’ bias, and nonad-

ditivity in probability judgments.
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More general extensions of the GLMM may be obtained by considering

alternative link functions and distributions. As indicated earlier, the logit is not

the only twice-differentiable link function that transforms the unit interval to the

real line. Little is known about how these alternative link functions perform in

comparison with the logit.

Likewise, several alternatives to the beta distribution have been proposed.

Kumaraswamy (1980) provided a two-parameter (a; β) distribution closely

related to the beta. A Kumaraswamy-distributed random variable is the ath root

of a Beta(1, β) random variable. This distribution’s main advantage over the beta

distribution is the closed form of its density and cumulative density functions, but

the expressions for its moments do not have closed forms whereas those for the

beta distribution do.

A more popular alternative is Johnson’s SB distribution, which begins with a

linear scaling to the (0,1) interval, followed by a logit transformation and finally

a linear scaling to the standard normal distribution. The logit-logistic (LL) distri-

bution (Tadikamalla & Johnson, 1982) replaces the normal with the standard

logistic distribution. The chief advantage of the LL over the SB distribution is that

its CDF has a simple closed invertible form. The shape domain of the LL distri-

bution includes that of the beta distribution. However, its moments do not have

closed-form expressions. A third alternative is the simplex distribution

(Barndorff-Nielsen & Jorgensen, 1991), which is constructed from the inverse

Gaussian distribution in a manner similar to the way the beta is contsructed

from the gamma distribution. Like the beta parameterization used in GLMs,

the simplex distribution is parameterized in terms of a mean and standard

deviation. Unlike the beta model, the simplex distribution is naturally a

deviance-based model. Kieschnick and McCullogh (2003) compare it with their

beta regression model on two data sets. Qiu, Song, and Tan (2007) develop a

simplex distribution mixed model.

Fourth, the logit-normal and logit-logistic distributions are members of the

otherwise unexplored symmetric family that utilizes an invertible transformation

H : ½�1;1� ! ½0; 1� such that x ¼ HðzÞ, and a standardized PDF, gðzÞ, whose

support is the real line. The resultant PDF of X is

f ðxÞ ¼ gðH�1ðxÞÞ qH�1ðxÞ
qx

:

The H function can be any CDF whose quantile function has a closed

form expression. For some of these distributions, as with the logit-logistic, the

cumulative density and quantile functions can be explicitly written, and they

have natural location and dispersion submodels. However, very little is known

about this subfamily.

Finally, Cox (1996) and Papke and Wooldridge (1996) apply a quasi-

likelihood approach to modeling a variable on the unit interval. The quasi-

likelihood approach specifies the first and second moments of the conditional
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distribution as functions of the mean but does not specify the full distribution; in

this sense it is a second-order analog of maximum likelihood. This approach is

useful when the relationship between the mean and variance is not captured by

a standard distribution. Kieschnick and McCullogh (2003) compare a special

case of Papke and Wooldridge’s model with their beta regression model on two

data sets and find that both work reasonably well and give similar results. A strat-

egy using a semiparametric model based on the Dirichlet process might also be a

useful strategy to consider (McAuliffe, Blei, & Jordan, 2006).

Summing up, this article has extended beta regression to deal with dependent

observations in a general way, along the lines of the multilevel modeling litera-

ture. The resulting GLMM has been shown to be effective in a simulation study

and three real-world applications and, as indicated earlier, it has applicability in a

wide range of disciplines where doubly bounded constructs are commonplace.

We also have demonstrated the practicality of MLL and MCMC estimation of

this GLMM under a variety of conditions. Code for the examples in this article

and additional resources are available at http://dl.dropbox.com/u/1857674/

betareg/betareg.html. As should be apparent from this section, there is consider-

able potential for extensions and developments in modeling doubly bounded

dependent variables, but the state of the art there is rapidly approaching a rich-

ness and sophistication comparable to the models available for other kinds of

variables.

Appendix

Score and Information Matrix

To simplify the presentation of the score and Hessian, we only consider the

log-density of one observation. These terms are all sums and can be pieced

together afterward as needed. Let

cðxÞ ¼ q
qx

log�ðxÞ; ðA1Þ

that is, the digamma function. The mean-precision parameterized beta density is

f ðy; m;fÞ ¼ �ðfÞ
�ðfmÞ� fð1� mÞð Þ y

fm�1ð1� yÞfð1�mÞ�1: ðA2Þ

Taking the natural logarithm, expanding fully and rearranging the terms slightly

gives

log f ðy; m;fÞ ¼ log �ðfÞ � log �ðfmÞ � log � fð1� mÞð Þ
þ fm log yþ fð1� mÞlog y� log y� log ð1� yÞ:

ðA3Þ

Components of the score function are given by the vector of first partials and the

Hessian by the matrix of second partials. These are
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qlogf

qm
¼ �f 2 arctanhð1� 2yÞ þ cðfmÞ þ cðfð1� mÞÞð Þ;

qlogf

qf
¼ �2m arctanhð1� 2yÞ þ cðfÞ � mcðfmÞ � ð1� mÞcðfð1� mÞÞ;

ðA4Þ

and

q2logf

qm2
¼ �f2 �c0 ðfmÞ þ c

0 ðfð1� mÞÞ
� �

; ðA5Þ

q2logf

qf2
¼ c

0 ðfÞ � m2c
0 ðfmÞ � ð1� mÞ2c0 ðfð1� mÞÞ;

q2logf

qmf
¼� 2 arctanhð1� 2yÞ � cðfmÞ � cðfð1� mÞÞ

� fmc
0 ðfmÞ þ fðm� 1Þc0 ðfð1� mÞÞ;

respectively. Depending on the algorithm and software used, these quantities

may or may not be necessary. Modern software such as SAS uses symbolic dif-

ferentiation to compute the needed derivatives and only require the likelihood.

Other algorithms use numerical approximations to the derivatives. However,

they are of theoretical importance. In particular, the fact that m and f appear

in the cross-partial of the Hessian shows that the location and scale parameters

are not separable, unlike in models such as the Gaussian.

To consider a regression model for link pair mðXÞ ¼ gðXβÞ and

fðWÞ ¼ hðWdÞ, it is necessary to use the chain rule, considering the various par-

tial derivatives. See Ospina et al. (2006).

Note

1. The four-parameter beta distribution allows for the boundaries to be differ-

ent than (0, 1) by including two additional parameters. Assuming these boundaries

are known a priori the beta distribution on interval (l, u) is a linear transformation

of one on (0, 1) and thus, without loss of generality, the boundaries can be ignored.

If the boundaries are unknown, estimation becomes highly irregular. We believe it

is rarely the case that a doubly bounded distribution such as the beta would be a

plausible model when reasonable bounds are unknown a priori.
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