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CDF-quantile distributions for modelling random
variables on the unit interval

Michael Smithson* and Yiyun Shou
The Australian National University, Canberra, Australian Capital Territory, Australia

This paper introduces a two-parameter family of distributions for modelling random

variables on the (0,1) interval by applying the cumulative distribution function of one

‘parent’ distribution to the quantile function of another. Family members have explicit

probability density functions, cumulative distribution functions and quantiles in a location

parameter and a dispersion parameter. They capture awide variety of shapes that the beta

and Kumaraswamy distributions cannot. They are amenable to likelihood inference, and

enable a wide variety of quantile regression models, with predictors for both the location

and dispersion parameters.We demonstrate their applicability to psychological research

problems and their utility in modelling real data.

1. Introduction

To date, the most commonly employed two-parameter distributions for modelling

random variables on the (0,1) interval are the beta (e.g., Ferrari & Cribari-Neto, 2004;

Smithson & Verkuilen, 2006) and, less commonly, the Kumaraswamy (1980), lambda,
and logit-logistic distributions. Other two-parameter distributions have been proposed,

including the simplex and triangular distributions (e.g., Barndorff-Nielsen & Jørgensen,

1991; Kotz & Van Dorp, 2004), although these have yet to be widely adopted in

practical modelling. Doubly bounded random variables occur throughout psychology

and cognate areas such as economics and biology. The most commonplace examples in

psychology include proportions and percentages, such as probability judgements, the

proportion of the brain’s volume occupied by a specific part of the brain, and the

proportion of a period of time spent on an activity. Examples from economics include
rates, such as fractional repayments on debts, market shares, and capital structure.

Many psychological scales are doubly bounded, and in some applications it is sensible

to treat the bounds as true scores (rather than as censored scores). For instance, Zou,

Carlsson and Quinn (2010) apply beta regression to Likert scale data, and Moberg,

Alderling and Meding (2009) apply beta regression to a quality of life index. Likewise,

No€el and Dauvier (2007) provide item-response models for doubly bounded contin-

uous scale items using the beta distribution. Verkuilen and Smithson (2012) extended

beta regression to mixed (multi-level) models for dealing with dependencies in the
data. The handbook of the beta distribution (Gupta & Nadarajah, 2004) includes

examples of applications in other disciplines. It would seem that general linear models

for proportions and rates have reached a mature stage of development.
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Nevertheless, in comparison to the rich variety of distributions for modelling

continuous variables with a single lower bound, there are relatively few alternatives

for modelling doubly bounded random variables. In particular, the Kumaraswamy

and logit-logistic distributions are typically the only alternatives available for explicit
models of quantiles for such variables. In this paper we introduce a family of two-

parameter distributions with support (0,1) that are especially useful for modelling

quantiles, and that also sometimes outperform their better-known counterparts. We

have simultaneously launched a package, cdfquantreg, in R (Shou & Smithson,

2016) providing the software tools for modelling both parameters as general linear

models.

The distribution family presented here has links with earlier families of

distributions. Tadikamalla and Johnson (1982) replace the standard normal distribu-
tion in Johnson’s (1949) SB distribution with the standard logistic distribution, thus

producing the logit-logistic distribution. As discussed by Johnson, Kotz and Balakr-

ishnan (1995), the Johnson SB system includes many well-known distributions, but

until recently relatively little attention has been paid to distributions whose support is

(0,1). A natural extension of this approach is to employ other transformations from

(0,1) to either the real line or non-negative half of the real line, and expand the

variety of distributions as well.

A related approach is to generate the cumulative distribution function (cdf) of a
distribution via another cdf as the upper limit of an integral over the probability density

function (pdf) of a random variable whose support is (0,1). Eugene, Lee and Famoye

(2002) produced such a family using the beta distribution as a generator. The cdf of a

random variable X is defined as

G xð Þ ¼
ZS xð Þ

0

r tð Þdt; ð1:1Þ

where r(t) is the pdf of the beta distribution and S(x) is the cdf of any random variable.
Cordeiro and de Castro (2011) and Jones (2009) expanded this family by substituting the

Kumaraswamy (1980) distribution as r(t). Alzaatreh, Lee and Famoye (2013) made two

further extensions that considerably broadened the scope of this family. Their so-called T-

X family is defined as follows:

G xð Þ ¼
ZW S xð Þð Þ

a

r tð Þdt; ð1:2Þ

where r(t) is now the pdf of a random variable, T 2 [a,b], for�∞ ≤ a < b ≤ ∞.W(S(x))

in equation (1.2) satisfies three properties:

1. W(S(x)) 2 [a,b].

2. W(S(x)) is differentiable and monotonically non-decreasing.

3. W(S(x))?a as x?�∞ and W(S(x))?b as x?∞.

Finally, the cdf in equation (1.2) can be written in terms of the cdf of T:
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GðxÞ ¼ R½W ðSðxÞÞ�: ð1:3Þ

Aljarrah, Lee and Famoye (2014) mention that Alzaatreh et al. (2013) derived the

parameters of their family entirely through the parameters of R and S, without also
exploring the properties of W, although they presented several examples of W. Aljarrah

et al. extended the T-X family by proposing that W be the quantile function of a third

random variable, Y, say, whose support is the same as T.

Given these recent developments, now is a propitious time to exploit them to develop

tractable two-parameter candidates that can augment the toolbox of distributions whose

support is (0,1). As it happens, a recent development enables us to do so directly.

Independently of Aljarrah et al. (2014), Smithson and Merkle (2014, p. 158) describe a

distribution family that is a special case of Aljarrah et al.’s family but also related to the
Johnson SB family.

The rest of this paper investigates a general version of the family described by Smithson

and Merkle. The simplest characterization of this family of distributions is in terms of its

cdf. Let G(x,l,r) denote a cdf for random variable X with support (0,1), a real-valued

location parameter l and positive scale parameter r. We define G as follows:

Gðx; l;rÞ ¼ F ½UðH�1ðxÞ; l;rÞ�; ð1:4Þ

where F is a cdf with support which we shall denote by D1, H is an invertible cdf with

support denoted by D2, and U : D2 ! D1 is an appropriate transform for imposing the

location and scale parameters,l andr.We limit the domainsD1 andD2 to pairs taken from

(�∞,∞) and/or (0,∞), and consider special cases of U.

For D1 ¼ �1;1ð Þ and D2 ¼ �1;1ð Þ, we put

Uðy; l;rÞ ¼ ðy� lÞ=r: ð1:5Þ

For D1 ¼ �1;1ð Þ and D2 ¼ 0;1ð Þ we put

U y; l;rð Þ ¼ ðlogðyÞ � lÞ=r: ð1:6Þ

For D1 ¼ 0;1ð Þ and D2 ¼ �1;1ð Þ we put

U y; l;rð Þ ¼ expð�l=rÞ expðy=rÞ: ð1:7Þ

Finally, for D1 ¼ 0;1ð Þ and D2 ¼ 0;1ð Þ we put

U y; l;rð Þ ¼ expð�l=rÞy1=r: ð1:8Þ

If all the functions are differentiable then the pdf g(x, l, r) has an explicit expression.
If F is invertible, then for every c such that G(x, l, r) = c, the quantile functions

corresponding to the cases described in equations (1.5)–(1.8) are as follows. For
D1 ¼ �1;1ð Þ and D2 ¼ �1;1ð Þ we put

G�1 c; l;rð Þ ¼ H rF�1 cð Þ þ l
� �

: ð1:9Þ

For D1 ¼ �1;1ð Þ and D2 ¼ 0;1ð Þ we put
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G�1 c; l;rð Þ ¼ H exp rF�1 cð Þ þ l
� �� �

: ð1:10Þ

For D1 ¼ 0;1ð Þ and D2 ¼ �1;1ð Þ we put

G�1 c; l;rð Þ ¼ H l þ r log F�1 cð Þ� �� �
: ð1:11Þ

Finally, for D1 ¼ 0;1ð Þ and D2 ¼ 0;1ð Þ we put

G�1 c; l;rð Þ ¼ H exp lð Þ F�1 cð Þ� �r� �
: ð1:12Þ

The distributions in equation (1.4) are related to the T-X family in equation (1.3)

by setting F = R and U ½H�1ðSðxÞ; l;rÞ� ¼ W ðSðxÞÞ, with H differentiable and x 2
(0,1). This reduces to equation (1.4) by restricting S to be the uniform cdf, so that
S(x) = x. In a third, also independent line of work, Lemonte and Baz�an (2016) present a

family of distributions with support (0,1) as an extension of the Johnson SB family. It is

easy to show that their family is a special case of ours with H restricted to the logistic

cdf (details available from the first author). Lemonte and Baz�an do not cite Alzaatreh

et al. (2013) or any other related papers, so they appear to have developed

their family independently of that group of researchers and of Smithson and Merkle

(2014).

If we further restrict F and H to be cdfs of location–scale distributions whose
own parameters have been fixed (e.g., F is the standard logistic cdf and H is a

standard Cauchy cdf), then we have a two-parameter subfamily whose location is

determined by l and scale by r. This paper focuses on this two-parameter subfamily,

which we will call the cdf-quantile family. We will argue that it has several useful

properties:

1. Many of its members are tractable, with explicit pdfs, cdfs, and quantiles.

2. They are amenable to likelihood inference, and thereby both maximum likelihood

and Bayesian estimation techniques.

3. They enable a wide variety of quantile regressionmodels for random variables on the

(0,1) intervalwith predictors for both location and dispersion parameters, and simple

interpretations of those parameters.
4. The family can model a wide variety of distribution shapes, with different skew and

kurtosis coverage from the beta or the Kumaraswamy.

5. The relationships between skew or kurtosis and the distribution parameters are

straightforward and well behaved.

6. Explicit quantiles render random generation of variates straightforward.

7. Members of this family fall into four categories regarding behaviour at the boundaries

of the (0,1) interval.

1.1. Examples

We present three examples from the cdf-quantile family. Our first example is the logit-

Cauchy distribution. This distribution employs the logistic cdf F(z) = exp (z)/

(1 + exp (z)) and the Cauchy cdf H zð Þ ¼ tan�1ðzÞ=p þ 1=2: It therefore has domains

D1 ¼ �1;1ð Þ and D2 ¼ �1;1ð Þ. Inverting H and applying it and F to equation (1.4)

gives
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G x; l;rð Þ ¼ 1

1 þ exp
lþ cotðpxÞ

r

� � ; ð1:13Þ

and differentiating it gives the pdf

g x; l;rð Þ ¼
pcsc2ðpxÞexp lþ cotðpxÞ

r

� �

r exp
lþ cotðpxÞ

r

� �
þ 1

� �2 : ð1:14Þ

Clearly x 2 (0,1), l 2 (�∞,∞) and r 2 (0,∞).

Inverting F and the appropriate substitutions into equation (1.13) give us the quantile

G�1 c; l;rð Þ ¼
tan�1 r l

r � log 1
c � 1

� �� �� �
p

þ 1

2
: ð1:15Þ

When c = 1/2 equation (1.15) reduces to

G�1 1=2; l;rð Þ ¼ tan�1 lð Þ
p

þ 1

2
;

so we see that the median is solely a function of l. For example, if l = 2 the median is
tan�1ð2Þ=p þ 0:5 ¼ 0:852, while if l = �2 the median is tan�1ð�2Þ=p þ 0:5 ¼ 0:148.

We also can see that r is a simple function of l and the e/(1 + e) quantile. First, we

observe that

G�1 e=ðe þ 1Þ; l;rð Þ ¼ tan�1ðl þ rÞ
p

þ 1

2
:

Solving for r yields

r ¼ tan pðG�1 e=ð1þ eÞ; l;rÞ � 1=2ð Þ� �� l:

Our second example is the Cauchit-arcsinh distribution, which employs the Cauchy cdf

FðzÞ ¼ tan�1ðzÞð Þ=p þ 1=2 and the arcsinh cdf HðzÞ ¼ 1= exp � sinh�1 ðzÞ� �þ 1
� �

. It

therefore also has domains D1 ¼ �1;1ð Þ and D2 ¼ �1;1ð Þ. Inverting H and

applying it and F to equation (1.4) gives

Gðx; l;rÞ ¼
tan�1 1�2x

2ðx�1Þx � l
� �

=r
� �

p
þ 1

2
ð1:16Þ

and the pdf

gðx;l;rÞ ¼ 2rð2ðx � 1Þx þ 1Þ
p 4r2ðx � 1Þ2x2 þ ð2lðx � 1Þx þ 2x � 1Þ2� � : ð1:17Þ

It can be shown that, unlike the beta distribution, the density at the boundaries of the unit

interval is finite, with limits g(0,l,r) = g(1,l,r) = 2r/p.
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Inverting F and the appropriate substitutions into equation (1.16) give us the

quantile

G�1 c; l;rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2lr cotðpcÞ þ r2cot2ðpcÞ þ l2 þ 1

p � r cotðpcÞ þ l� 1

2l� 2r cotðpcÞ :

ð1:18Þ

When c = 1/2 equation (1.18) reduces to

G�1 1=2; l;rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ l� 1

2l
;

so again we see that the median is solely a function of l. We also can see that r is a simple

function of l and the first quartile. First, we observe that

G�1 1=4; l;rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� rð Þ2 þ 1

q
þ l� rð Þ � 1

2 l� rð Þ ;

and solving for r yields

r ¼ 2G�1 1=4; l;rð Þ � 1

2 G�1 1=4; l;rð Þ � 1ð ÞG�1 1=4; l;rð Þ � l:

Our third example is the logit-F(1,1) distribution, which employs the logistic cdf

F(z) = exp (z)/(1 + exp (z)) and the F(1,1) cdf H zð Þ ¼ 2 tan�1
ffiffiffi
x

pð Þ=p. It therefore
has domains D1 ¼ �1;1ð Þ and D2 ¼ 0;1ð Þ. Inverting H and applying it and F to
equation (1.4) gives

Gðx; l;rÞ ¼ 1

exp � log tan2 px
2ð Þð Þ�l

r

	 

þ 1

ð1:19Þ

and the pdf

gðx; l;rÞ ¼ 2p exp l=rð Þ cscðpxÞ tan2 px
2

� �1=r
r exp l=rð Þ þ tan2 px

2

� �1=r� �2 : ð1:20Þ

Inverting F and the appropriate substitutions into equation (1.19) give us the quantile

G�1 c; l;rð Þ ¼
2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp l� r log 1�c

c

� �� �r	 


p
: ð1:21Þ

When c = 1/2 equation (1.21) reduces to
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G�1 1=2; l;rð Þ ¼ 2 tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp lð Þp� �

p
:

By a similar procedure to the preceding two examples, it can be shown that

r ¼ log tanðpG�1ðe=ðeþ 1Þ; l; rÞ=2Þ2� �� l:

These examples are illustrations that in this family the distribution location may be

described by l and the scale (or dispersion) by r. These characterizations will be proved

in the next section and exploited in Section 4 when we present the general linear model

based on this family and its associated estimation methods.
The remainder of this paper consists of six sections. The next section describes

the characteristics of the cdf-quantile family, elaborating its interpretation and the

nature of its parameters. The section thereafter forcuses on a subfamily that is

particularly useful for general linear models of proportions and rates, and that

captures four kinds of distribution shape. Section 4 then moves to maximum

likelihood inference, including the construction and evaluation of general linear

models that employ the subfamily developed in Section 3. Section 5 presents an

example from real data sets, demonstrating that cdf-quantile distributions can fit data
better than the beta distribution (a second example is presented in the Supporting

Information). The final section concludes with prospects for further developments

and applications.

2. Basic properties

We begin by offering some interpretations of the cdf-quantile distribution family.

Perhaps the most fundamental question raised by introducing a new distribution family

is what processes or phenomena are analogous to these distributions. The beta

distribution has a derivation as the ratio of one gamma-distributed random variable to

its sum with another gamma random variable, both of which share one parameter. An

analogous example is the proportion of a task’s duration devoted to a particular

subtask.

A useful interpretation of the cdf-quantile family is that H transforms X to a random
variable, Y, say, in D1, and then Y is fitted by a location–scale distribution whose cdf is

F(U(y,l,r)). In this sense, H and the appropriate U function are analogous to the link

function in a general linear model (GLM). Because X and G share the same domain, an

obvious analogy is to consider G as a redistribution of X.

There aremany analogous phenomena in psychology. For example, if we ask a random

sample of automobile drivers to estimate the percentage of drivers who are worse at

driving than they are, we would expect a well-calibrated sample to exhibit a uniform

distribution, that is, G(x,l,r) = x so that l = 0 and r = 1. An overconfident sample, on
the other hand, should return a positive estimate of l, with the median driver claiming to

have driving ability above the median, and r < 1. Another example (elaborated later in

this paper) is a comparison of positive and negative probability expressions, such as

‘likely’ and ‘unlikely’. If people’s personal numerical translations of these terms have the

probability associated with ‘likely’ being equivalent to the probability associated with

‘unlikely’ subtracted from1, thenwe should find thatG(x, l, r) for the former is identical

to 1�G(x, �l, r) for the latter.
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The redistribution of X by G potentially has two components, one if F 6¼ H and the

other if l 6¼ 0 and/or r 6¼ 1. It also immediately follows that if F = H, then when l = 0

and r = 1, G(x,l,r) = x and therefore G includes the uniform pdf as a special case.

We now elaborate four important properties of members of the cdf-quantile family,
namely that (1) under certain conditions they are self-dual in an analogous fashion to the

beta distribution, (2) l is a location parameter in the sense that the median is solely a

function of l, (3) r is a dispersion parameter in the sense that it controls the spread of

quantiles, and (4) for members of this distribution family there is a relationship between

the tail behaviour of the pdf and the first derivative of the quantile function.

Proposition 1. Under conditions specified in the cases below, g(x, l, r) is self-dual in
this respect:

g x; l;rð Þ ¼ g 1� x;�l;rð Þ: ð2:1Þ

Proof. There are four cases, corresponding to the domain pairs for equations (1.5)–(1.8).

Case 1. For D1 ¼ �1;1ð Þ and D2 ¼ �1;1ð Þ, when�H�1 xð Þ ¼ H�1 1� xð Þ and
f(x) = f(�x),

1�G 1� x;�l;rð Þ ¼ 1� F �H�1 xð Þ þ l
� �

=r
� � ¼ F H�1 xð Þ�l

� �
=r

� � ¼ G x;l;rð Þ:

Case 2. For D1 ¼ �1;1ð Þ and D2 ¼ 0;1ð Þ, when H�1 xð Þ ¼ 1=H�1 1� xð Þ and

f(x) = f(�x),

1� G 1� x;�l;rð Þ ¼ 1� F � log H�1 xð Þ� � þ l
� �

=r
� � ¼ F log H�1 xð Þ� �� l

� �
=r

� �
¼ G x; l;rð Þ:

Case 3. For D1 ¼ 0;1ð Þ and D2 ¼ �1;1ð Þ, when H�1 xð Þ ¼ 1=H�1 1� xð Þ and

F(x) = 1�F(1/x),

1� G 1� x;�l;rð Þ ¼ 1� F H�1 1� xð Þ exp lð Þ� �1=rh i
¼ F H�1 xð Þ exp �lð Þ� �1=rh i

¼ G x; l;rð Þ:

Case 4. For D1 ¼ 0;1ð Þ and D2 ¼ 0;1ð Þ, when �H�1 xð Þ ¼ H�1 1� xð Þ and

F(x) = 1�F(1/x),

1� G 1� x;�l;rð Þ ¼ 1� F exp �H�1 xð Þ þ l
� �

=r
� �� � ¼ F exp H�1 xð Þ � l

� �
=r

� �� �
¼ G x; l;rð Þ:

For each of these cases, we have shown that 1�G(1�x, �l, r) = G(x, l,r), which gives

our result.

There are conditions underwhich the quantilemay be expressedpurely in terms of the

location parameter l. For modelling purposes, it is useful to know when the median has
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this property because that identifies lwith themedian (i.e., location) submodel, aswill be

elaborated later in this paper. For cdf-quantile distributions whose median is solely a

function of l, l is a location parameter. We already have presented examples in

Section 1.1 where this is the case. The following proposition presents the conditions
under which this occurs.

Proposition 2. For support D1 ¼ �1;1ð Þ the requirement is that for some real

number c, which does not depend on r,

F�1 1=2ð Þ ¼ c=r; ð2:2Þ

with the restriction that the constant c 6¼ �l. For supportD1 ¼ 0;1ð Þ the requirement is

F�1 1=2ð Þ ¼ bc=r; ð2:3Þ

where b is a non-negative real number, with the restriction that bc=r 6¼ exp �l=rð Þ.

Proof. Both parts of the proposition follow immediately from the quantile functions in

equations (1.9) to (1.12).

We now turn to considering the conditions under which r is a dispersion parameter.

FollowingMitnik and Baek (2013, pp. 181–182), we show thatr is a dispersion parameter

via an argument based on the ‘quantile spread order’ from Townsend and Colonius

(2005). Define quantile spread as

Q c; l;rð Þ ¼ G�1 1� c; l;rð Þ � G�1 c; l;rð Þ; ð2:4Þ

for 0 < c <1/2. If it can be shown that Q c; l;r1ð Þ\Q c; l;r2ð Þ if and only if r1\r2, then

rhas been shown to be a dispersionparameter.Weprove that this holds under conditions

that are a special case of the conditions for Proposition 2.

Proposition 3. For D1 ¼ �1;1ð Þ and F�1 1=2ð Þ ¼ 0; and for D1 ¼ 0;1ð Þ and

F�1 1=2ð Þ ¼ 1;Q c; l;r1ð Þ\Q c; l;r2ð Þ if and only if r1\r2:

Proof. As in Proposition 1, we have four cases.

Cases 1 and 2. For D1 ¼ �1;1ð Þ, D2 ¼ �1;1ð Þ, and F�1 1=2ð Þ ¼ 0;

Q c; l;r1ð Þ ¼ H r1F
�1 1� cð Þ þ l

� �� H r1F
�1 cð Þ þ l

� �

and

Q c; l;r2ð Þ ¼ H r2F
�1 1� cð Þ þ l

� �� H r2F
�1 cð Þ þ l

� �
:

Because F�1 1=2ð Þ ¼ 0; we have F�1 cð Þ\0 and F�1 1� cð Þ[ 0: Thus,
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H r2F
�1 1� cð Þ þ l

� �
[H r1F

�1 1� cð Þ þ l
� �

;

and

H r2F
�1 cð Þ þ l

� �
\H r1F

�1 cð Þ þ l
� �

:

Therefore,Q c; l;r1ð Þ\Q c;l;r2ð Þ if and only ifr1\r2. A similar argument goes through

for Case 2, where D1 ¼ �1;1ð Þ and D2 ¼ 0;1ð Þ.

Cases 3 and 4. For D1 ¼ 0;1ð Þ, D2 ¼ �1;1ð Þ, and F�1 1=2ð Þ ¼ 1;

Q c; l;r1ð Þ ¼ H l þ r1 log F�1 1� cð Þ� �� �� H l þ r1 log F�1 cð Þ� �� �

and

Q c; l;r2ð Þ ¼ H l þ r2 log F�1 1� cð Þ� �� �� H l þ r2 log F�1 cð Þ� �� �
:

Because F�1 1=2ð Þ ¼ 1; we have log F�1 cð Þð Þ\0 and log F�1 1� cð Þð Þ[ 0: Thus,

H l þ r2 log F�1 1� cð Þ� �� �
[H l þ r1 log F�1 1� cð Þ� �� �

and

H l þ r2 log F�1 cð Þ� �� �
\H l þ r1 log F�1 cð Þ� �� �

:

Therefore, Q c; l;r1ð Þ\Q c; l;r2ð Þ if and only if r1\r2. A similar argument
goes through for Case 4, where D1 ¼ 0;1ð Þ and D2 ¼ 0;1ð Þ, but only for 1�r1 and

1�r2.

There is a relation that is apparent from examining pairs of these distributions in

which F and H exchange roles. These pairs are ‘quantile-duals’ of one another in the

sense that one’s cdf is the other’s quantile, with the appropriate parameterization. This

duality is due to the fact that (0,1) is both the domain and range of these functions. We

will denote these distributions with the nomenclature F�H (e.g., Cauchit-logistic and

logit-Cauchy). Jones (2002) refers to these as ‘complementary distributions’, and applied
this exchange to the beta distribution, but observed later (Jones, 2009) that doing so

with the beta yields little practical gain. We shall see that in the cdf-quantile family, this

exchange produces distributions that differ in important respects from both their

quantile-dual counterparts. The chief difference between them stems from the following

proposition.

Proposition 4. For any cdf G whose support is (0,1),

lim
x!0

oG x; l;rð Þ
ox

¼ lim
c!0

1

oG�1 c; l;rð Þ=oc

and
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lim
x!1

oG x; l;rð Þ
ox

¼ lim
c!1

1

oG�1 c; l;rð Þ=oc :

Proof. Setting G(x,l,r) = c, by the inverse rule of differentiation, for every x in (0,1)

there exists c in (0,1) such that

oG x; l;rð Þ
ox

¼ 1

oG�1 c; l;rð Þ=oc :

The result immediately follows by observing that G(0,l,r) = 0 and G(1,l,r) = 1.

3. Distributions with identical parent distribution supports

For the remainder of the paper, we focus on those F�H distributions forwhich the parent

distribution supports are D1 ¼ D2 ¼ �1;1ð Þ. Our investigations thus far have

indicated that these are the most promising for applications. We note in passing that

neither Aljarrah et al. (2014) nor Lemonte and Baz�an (2016) systematically investigate the

kinds of shapes that these distributions can fit. Lemonte and Baz�an, for instance, give
examples of unimodal and trimodal distributions without remarking on this. We have

found that these distributions fall into four kinds of characteristic shapes, which can be

described by their density’s tail behaviour at the boundaries of the unit interval:

1. ∀r < s, lim
x!0

g x; l;rð Þ ¼ lim
x!1

g x; l;rð Þ ¼ 0, ∀r = s, lim
x!0

g x; l;rð Þ ¼ v �lð Þ and
lim
x!1

g x; l;rð Þ ¼ v lð Þ, and∀r > s, lim
x!0

g x; l;rð Þ ¼ lim
x!1

g x; l;rð Þ ¼ 1, where s is

a constant and v(z) ≥ 0;
2. lim

x!0
g x; l;rð Þ ¼ lim

x!1
g x; l;rð Þ ¼ 0;

3. lim
x!0

g x; l;rð Þ ¼ lim
x!1

g x; l;rð Þ ¼ uðrÞ, where u(r) ≥ 0; and

4. lim
x!0

g x; l;rð Þ ¼ lim
x!1

g x; l;rð Þ ¼ 1.

The first subgroup, which we denote here by LL, is typified by the logit-logistic

distribution. The LL distributions share some properties with the beta and Kumaraswamy

distributions, but have a different coverage of skewness and kurtosis (see the Supporting

Information). Some LL distributions include the uniform as a special case, but not all do.

When r > s the distribution is unimodal, and when r < s the distribution has a bathtub
shape with modes at 0 and 1. The logit-logistic distribution’s v(l) = exp(l) when

r = s = 1, andothermembers of this subgrouphave similar functions ofl at the threshold
value forr. It follows from Proposition 4 that if the F�H distribution is an LL distribution,

then so is its quantile-dual H�F distribution. Figure 1 displays several examples of the

logit-logistic distribution for selected values of l and r.
The second subgroup, referred to here as the bimodal (BM), is capable of being

bimodal on the (0,1) interval, thanks to the limit of 0 for the density at 0 and 1, which the

beta, Kumaraswamy, and LL distributions are not. Also because of this limit, the second
subgroup does not include the uniform distribution as a special case, but has symmetric

special cases at x = 1/2. Figure 2 displays several examples from the T2-Cauchy

distribution, a typical BM distribution (T2 refers to a t distribution with 2 degrees of

freedom; see Table 1 for the T2 and Cauchy functions that define this distribution).

CDF-quantile distributions 11



The third subgroup has non-zero but finite density in the limit at 0 and 1 as a function of

r, and we shall refer to it as the finite-tailed (FT) group. Some FT distributions include the

uniform pdf, but not all do. The arcsinh-arcsinh distribution’s limiting density at 0 and 1 is

u(r) = r, and for other members of this subgroup u(r) is a simple monotonically

increasing function of r. Although generally unimodal, for sufficiently large r, these
distributions have minor modes at 0 and 1. It follows from Proposition 4 that if the F�H

distribution is an FT distribution, then so is its quantile-dual H�F distribution. Figure 3

displays several examples from the arcsinh-arcsinh distribution (see Table 1 for the
definition of the ArcSinh function).

The fourth subgroup is trimodal, with twomodes at 0 and 1 due to the infinite densities

at the limit. We refer to it as the trimodal (TM) group, and it does not include the uniform

pdf but does have symmetric special cases at x = 1/2. Figure 4 displays several examples

from the Cauchit-T2 distribution. This distribution is the quantile-dual of the T2-Cauchy,

whose distribution is graphed in Figure 2. It follows from Proposition 4 that the F�H

distribution is BM if and only if its quantile-dual H�F distribution is TM.

Figure 1. Logit-logistic distribution probability density functions.

Figure 2. T2-Cauchy distribution probability density functions.
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Table 1 classifies various F�H distributions forwhich the parent distribution supports

areD1 ¼ D2 ¼ �1;1ð Þ, by subfamily and shape. All of them are self-dual and therefore

have symmetric special cases, but only the LL and some of the FT distributions include the

uniform as a special case.

The finding that the subfamily of distributions for which the parent distribution

supports are D1 ¼ D2 = [�∞, ∞] divides into four categories of shapes suggests that

their skewness–kurtosis maps might fall into corresponding categories. We investigated

two kinds of skewness and kurtosis measures, both of which take advantage of an explicit
expression for the quantile. First, we employed the classical quantile-based measures of

skewness (Bowley, 1917) and kurtosis (Moors, 1988). These are the skewness and

kurtosis measures employed by Alzaatreh et al. (2013) in exploring the properties of their

distribution family. Second, we also used the L-moment measures, which may be

computed via linear combinations of probability-weighted moments (Greenwood,

Landwehr, Matalas & Wallis, 1979) to provide a check on the findings from the classical

measures.

Figure 3. Arcsinh-arcsinh distribution probability density functions.

Figure 4. Cauchit-T2 distribution probability density functions.
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These investigations are detailed in the Supporting Information. As demonstrated

therein, the cdf-quantile family is well behaved with regard to skew and kurtosis as

functions of its location and dispersion parameters. The distributions there cover a variety

of skew and kurtosis combinations that differ from coverage by the Kumaraswamy or the
beta. The characteristics of their skew–kurtosis maps correspond to the four shape

categories described earlier.

4. Inference and modelling

4.1. Maximum likelihood inference and regression model
Maximum likelihood inference for this distribution family hinges entirely on the nature of

F and H. For D1 ¼ D2 ¼ �1;1ð Þ the pdf may be written as

g x; l;rð Þ ¼
q xð Þ f H�1ðxÞ�l

r

� �
r

; ð4:1Þ

where f is the pdf corresponding to F, and q is the quantile distribution function

corresponding to H�1. The log-likelihood function therefore is

l x; l;rð Þ ¼ log f
H�1 xð Þ � l

r

	 
	 

þ log q xð Þð Þ � logðrÞ: ð4:2Þ

Differentiating the log of g with respect to l and r drops q and yields

o log g x; l;rð Þð Þ=ol ¼ �
of H�1ðxÞ�l

r

� �
=ol

rf H�1ðxÞ�l
r

� � ; ð4:3Þ

o log g x; l;rð Þð Þ=or ¼
ðl� H�1ðxÞÞ of H�1ðxÞ�l

r

� �
=or

� �

r2f
H�1ðxÞ�l

r

� � � 1

r
: ð4:4Þ

Equations (4.3) and (4.4) show that the sole requirement for an explicit gradient is that f is

differentiable. A similar argument leads to the requirement that f is twice differentiable to

obtain an explicit Hessian, fromwhich standard errors of the parameter estimates may be

obtained. All of the examples in Table 1 satisfy these requirements, and so maximum

likelihood estimation (MLE) with them may be achieved using standard estimation

methods.

Thecdf-quantile family and its appropriate estimationmethods alsoare in the traditionof
log-location–scale modelling (e.g., Lawless, 2011), with G inheriting important properties

ofF. For instance, log-concavity ofG inH�1ðxÞ is guaranteed if theparentpdf, f(x, l, r)=@F
(x, l, r)/@x, is log-concave (thereby ensuring that the cdf, F, also is log-concave).

We are now in a position to describe and illustrate the GLM of quantiles (i.e., the

quantile regression model) for random variables on the (0,1) interval. Consider a random

sample of N independent observations from (Y, V), where Y is a random variable with

support (0,1) and V is a vector of predictors. Amodel for the distribution ofY, conditional

on V, has two submodels, the ‘location submodel’ for l and the ‘dispersion submodel’ for

CDF-quantile distributions 15



r. The location submodel has a vectorW of predictors selected fromV, and the dispersion
model has another vector of predictors Z selected from V. The sets of predictors inW and

Zmay or may not overlap. For the ith observation, these submodels may be written as

Ll l̂ið Þ ¼ wT
i b; i ¼ 1; . . .; N ; ð4:5Þ

Lr r̂ið Þ ¼ zTi d; i ¼ 1; . . .; N ; ð4:6Þ

where Ll and Lr are link functions in the usual GLM sense of this term, l̂i and r̂i are

maximum likelihood estimates of l andr respectively, conditional onwi and zi which are

the observed values of the vectors of the predictors selected from V, and b and d are
vectors of coefficients yielding the maximum likelihood estimates. For

D1 ¼ D2 ¼ �1;1ð Þ a practical location submodel link function is the identity, and a

practical link function for the dispersion submodel is the log.

For large samples, under the usual regularity conditions (Pawitan, 2001) for MLE, the

joint distribution of the maximum likelihood estimates is approximately multivariate

normal, so that

b̂

ĉ

	 

�N

b
c

	 

;M�1

	 

; ð4:7Þ

whereM�1 is the inverse Fisher informationmatrix. TheWald confidence interval for each

parameter hj in the parameter vector h = (b,c) is

ĥj � U�1 1� a=2ð Þse ĥj
� �

; ð4:8Þ

where ĥj is the maximum likelihood estimate of hj, U�1 is the cdf of the normal

distribution, 1�a is the confidence level, and

se ĥj
� �

¼ diag cov ĥ
� �� �h i1=2

j
ð4:9Þ

is the standard error of ĥj in which cov ĥ
� �

¼ M�1 ĥ
� �

is the asymptotic variance–
covariance matrix of ĥ. In the cdf-quantile family the median is a monotonic function

of the location parameter l, so under the conditions specified for Proposition 3 the

confidence interval for l̂ can be converted into a confidence interval for the median

by substituting the lower and upper limits into the formula for the median. For our

first example, the logit-Cauchy distribution, from equation (1.15) we can see that the

confidence interval around the median is tan�1ðl̂� U�1ð1� a=2Þseðl̂ÞÞ=p þ 1=2 For

instance, if l̂ ¼ 2:5 and seðl̂Þ ¼ 0:6, then the 95% confidence interval for l is

[1.324,3.676], the estimate for the median is 0.879, and the 95% confidence interval
around it is [0.794,0.915].

Wehave conducted simulations investigating the distributions ofmaximum likelihood

estimates for l and r from samples from each of the 16 distributions included in the

original cdfquantreg R package which comprise a representative selection from the

family, for sample sizes of 20, 100, and 200. These distributions are listed in Figures S3 and

S4 in the Supporting Information. We assessed each distribution for estimation bias and
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the normality of the maximum likelihood estimate distributions. As detailed in the

Supporting Information, the maximum likelihood estimates for both parameters exhibit

close approximations to normal distributions even for sample sizes of 20. There is little

indication of estimator bias for either parameter.
We also have conducted simulations investigating the Type I error-rate coverage of

the likelihood-ratio test for four distributions from the family (arcsinh-arcsinh, logit-

logistic, T2-Cauchy, and Cauchit-T2) along with the beta distribution, for sample sizes

of 20 and 100. Details are available in the Supporting Information. Briefly, Type I error

rates were accurate for both the location and dispersion submodels when distributions

were used to model random samples from the same distributions, and location

submodel error rates also were accurate even when models used distributions differing

from the sampled distribution. Dispersion submodel error rates tended to become
somewhat inflated when the modelling distribution differed from the sampled

distribution, most strongly for the TM and least so for the BM distributions, and to a

lesser extent with larger samples. This was more strongly the case for the beta

distribution than for most of the cdf-quantile distributions, so it appears to be a generic

hazard in modelling doubly bounded random variables and cautions researchers to

ensure that their models are not misspecified.

4.2. Fitting distributions

The prospect of model evaluation immediately raises two important issues: the choice

of a distribution from the family; and what constitutes appropriate model diagnostics.

Regarding the first issue, it should be noted that the current state of the art offers only

scanty guidelines for selecting among alternative distributions. The conventional

approaches favour one information-criterion measure or another; for example, Rust,

Simester, Brodie and Nilikant (1995) advocate the Bayesian information criterion (BIC).

Vrieze (2012) presents a thoughtful exposition on the choice between the BIC and the
Akaike information criterion (AIC). However, these considerations become irrelevant

when comparing alternative distributions on the same data set with the same

predictors, because differences between any such information criteria simply reduce to

differences between the log-likelihoods (see our example in Section 5). If we turn now

to the T-X and related families, none of the relevant papers offer guidelines for

choosing one distribution in such a family over another. Lemonte and Baz�an (2016)

utilize the AIC in their examples when they compare alternative distributions for

goodness of fit.
In fact, the empirical approach is the state of the art when it comes to deciding

whether to use the beta, simplex, logit-logistic, Kumaraswamy, or any other

appropriate distributions available in the current literature. One of the main reasons

for this is, as Kieschnick and McCullough (2003, p. 95) point out, that when it comes

to proportions ‘there is no clear agreement on the data generating process for such

data. Thus, we fit the different regression models to a common data set using a

common specification of the regressors to determine which regression model best

describes the data.’
An in-depth examination of the prospects for an agreed-upon data generating process

(or processes) for proportional data is beyond the scope of this paper, but we add one

suggestion here, referring to the tail behaviour of the distributions in the cdf-quantile

family. There may be theoretical or practical reasons to prefer one type of distribution

over another on the basis of its behaviour near the boundaries of the unit interval. For
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example, if one expects never to observe values close to 0 or 1 then the BM and LL types

would seem preferable to the TM and FT types. On the other hand, as our example

demonstrates, a ‘long’ tail in the observed distribution may favour the FT or TM types for

modelling it. Given the current state of the art, we recommend that researchers fit several
alternative distributions to their data unless they have compelling reasons to narrow their

selection a priori.

A systematic investigation of the model-diagnostic issues of model residuals and

influence measures for this distribution family is also beyond our scope, and these are

active areas of research. However, traditional residuals such as the Pearson, Anscombe,

and deviance residuals are applicable here, and so are influence measures such as the

dfbetas.Wemake one suggestion regarding these, namely that residuals allow for terms in

both the location and dispersion submodels. For instance,we follow Smithson andMerkle
(2014, p. 171) in defining the Pearson residual as ri ¼ yi � l̂ið Þ=r̂i, so that non-constant

variance is permitted.

Lemonte and Baz�an (2016) discuss methods of identifying local influence via Cook’s

(1986) distance under five perturbation schemes. They also utilize deviance residuals and

a modified form of these (see Rocha & Simas, 2011) as leverage measures. We do not

investigate these in this paper, but refer readers to these papers.

Lemonte and Baz�an mention but do not examine the sensitivity of different

distributions to observations near 0 or 1, whereas we have conducted simulations to
investigate this issue. As detailed in the Supporting Information, our simulations show that

the cdf-quantile distributions’ estimators for quantiles such as the 25th, 50th, and 75th

percentiles are more stable under the influence of outliers than the corresponding

estimators yielded by the beta distribution. The same therefore holds for the

corresponding location and dispersion parameter estimates. We conclude on this basis

that the cdf-quantile distributions are, overall, better suited than the beta distribution for

modelling quantiles of rates and proportions in the presence of outliers near 0 or 1.

5. Example: Lay interpretations of IPCC report probability phrases

We now present an example of model fitting in which distributions from the cdf-

quantile family outperform the beta and Kumaraswamy distributions. The fourth

Intergovernmental Panel on Climate Change (IPCC) report utilizes verbal phrases such

as ‘likely’ and ‘unlikely’ to describe the uncertainties in climate science. Budescu,
Broomell and Por (2009) conducted an experimental study of lay interpretations of

these phrases, using 13 sentences from the IPCC report, in which they asked 223

participants to provide lower, ‘best’, and upper numerical estimates of the probabil-

ities to which they believed each sentence referred (e.g., estimates of the probability

meant by ‘likely’ in the sentence ‘The Greenland ice sheet and other Arctic ice fields

likely contributed no more than 4 m of the observed sea level rise’). Budescu et al.

found that participants’ ‘best’ estimates were more regressive (towards the middle of

the [0, 1] interval) than the IPCC stipulations. In a reanalysis of their data using beta
regression, Smithson, Budescu, Broomell and Por (2012) reported that this tendency

was stronger for negatively worded phrases (e.g., ‘unlikely’) than for positively worded

phrases. Moreover, they found greater dispersion of responses (i.e., less consensus) for

negative than for positive phrases.

We reprise part of this modelling exercise here, comparing the performance of the

beta regressionmodelwith its logit-logistic and T2–T2 counterparts, as examples from the
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cdf-quantile family (we will bring in other examples shortly). The cdf and pdf of the logit-

logistic distribution are

Gðx; l;rÞ ¼ 1=ðexp½ðl þ logðð1� xÞ=xÞÞ=r� þ 1Þ;

gðx; l;rÞ ¼ expðl=rÞðð1� xÞ=xÞ1=r�1

x þ expðl=rÞðð1� xÞ=xÞ1=rx
� �2

r

: ð5:1Þ

The T2–T2 cdf is

G x; l;rð Þ ¼ wðxÞ � l

r 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðxÞ � lð Þ=rð Þ2 þ 2

q	 
 þ 1

2
; ð5:2Þ

where

Table 2. Model fits and parameter estimates for ‘best’ estimates

Item Distribution l̂ SE logðr̂Þ SE –LL Q:25 Q:5 Q:75

Q4 (‘likely’) Empirical 0.658 0.570 0.699 0.804

Beta 0.637 0.062 3.940 0.340 �44.164 0.483 0.662 0.813

Logit-log. 0.825 0.067 �0.519 0.057 �62.180 0.543 0.695 0.814

T2–T2 0.643 0.045 �0.659 0.075 �76.160 0.577 0.707 0.801

Q5 (‘likely’) Empirical 0.646 0.585 0.679 0.769

Beta 0.643 0.052 6.150 0.546 �76.842 0.519 0.659 0.782

Logit-log. 0.720 0.054 �0.748 0.057 �87.560 0.550 0.673 0.776

T2–T2 0.553 0.035 �0.915 0.074 �98.630 0.579 0.682 0.764

Q6 (‘likely’) Empirical 0.697 0.610 0.719 0.799

Beta 0.700 0.057 5.345 0.476 �83.389 0.579 0.726 0.845

Logit-log. 0.940 0.062 �0.594 0.058 �85.260 0.583 0.719 0.824

T2–T2 0.653 0.039 �0.797 0.075 �99.030 0.599 0.710 0.793

Q8 (‘unlikely’) Empirical 0.652 0.460 0.749 0.838

Beta 0.614 0.072 2.438 0.201 �19.763 0.413 0.649 0.842

Logit-log. 0.889 0.093 �0.201 0.057 �35.630 0.497 0.709 0.857

T2–T2 0.807 0.062 �0.319 0.078 �53.640 0.575 0.748 0.852

Q9 (‘unlikely’) Empirical 0.648 0.455 0.759 0.829

Beta 0.616 0.070 2.666 0.222 �21.880 0.423 0.648 0.833

Logit-log. 0.870 0.090 �0.249 0.057 �36.810 0.503 0.705 0.849

T2–T2 0.820 0.058 �0.398 0.081 �56.080 0.594 0.751 0.848

Q10 (‘unlikely’) Empirical 0.667 0.520 0.749 0.833

Beta 0.646 0.069 2.943 0.249 �34.526 0.472 0.683 0.850

Logit-log. 0.930 0.085 �0.286 0.057 �46.040 0.526 0.717 0.853

T2–T2 0.769 0.059 �0.393 0.076 �57.370 0.576 0.739 0.841

Notes. The ‘unlikely’ data (Q8–Q10) have been subtracted from 1 to render them directly

comparable with the ‘likely’ data. This is also the case for the histograms in Figure 5. The l̂ and r̂
parameters in this table do not have the conventional meanings of a mean and standard deviation.

They are themean and precision for the beta distribution, and otherwise they are the parameters for

members of the cdf-quantile family as defined in equation (2.1). Logit-log. = logit-logistic
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wðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2xÞ2

q
ffiffiffi
2

p ffiffiðp
1� xÞx ; 0� x\

1

2
;

wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2xÞ2

q
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� xÞxp ;
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2
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ð5:3Þ

and the pdf is

g x; l;rð Þ ¼ r2= 1 þ 2l 1� 2x2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� xÞx
p

þ 2x 1� xð Þðl2 þ 2r2 � 2Þ
� �3=2

:

ð5:4Þ

We focus on six of the 13 sentences, namely those containing the probability

expressions ‘likely’ and ‘unlikely’ (Q4–Q6 and Q8–Q10). We also limit our analysis

to the ‘best’ estimates given by the 223 subjects in their interpretations of ‘likely’

and ‘unlikely’ (thereby omitting their lower and upper estimates). To begin, we

obtain maximum likelihood estimates for the three distributions fitted to this subset

of the data. The parameter estimates, standard errors, 25th, 50th, and 75th estimated

quantiles, along with the negative log-likelihoods for the fits, are displayed in
Table 2. In all cases, the T2–T2 distributions fit the data better than the beta or

logit-logistic distributions, while the logit-logistic fits are better than those for the

beta.

Figure 5 displays the fitted beta, logit-logistic, and T2–T2 distributions superimposed

on histograms of the data whose total areas equal 1. Table 2 shows a consistent tendency

for the T2–T2models to place theQ:25 andQ:5 estimates higher than the logit-logistic and

the beta models. That tendency and these graphs clarify the main reason for the superior

fit of the T2–T2 to the data. The distributions not only are skewed but also have a heavy left
tail combinedwith an inflection close to 0.5, so amember of the finite-tailed (FT) group of

distributions such as T2–T2 captures them fairly well.

We recall that a key finding by Smithson et al. (2012) was that the means of the

‘unlikely’ distributions were more regressive than the means of the ‘likely’ distributions.

The T2–T2 estimates in Table 3 appear to be suggesting that the opposite is true for the

medians. We nowmodel the entire data set (treating the observations as independent for

the time being), with ‘likely’ versus ‘unlikely’ as a predictor. The location and dispersion

submodels are

l̂i ¼ b̂0 þ b̂1wi;

logðr̂iÞ ¼ d̂0 þ d1wi

; ð5:5Þ

where wi = 1 if the phrase is ‘likely’ and 0 if it is ‘unlikely’.

Table 3 displays the parameter estimates, standard errors, and 95% confidence
intervals for the beta, Kumaraswamy, and several members of the cdf-quantile family,

including the logit-logistic and T2–T2 as before, along with their respective negative

log-likelihoods. Table 4 displays the 25th, 50th, and 75th estimated quantiles. The

sample quantiles are shown in the first pair of rows of the table, and the quantile

estimates from the beta and Kumaraswamy distributions in the second and third pairs

of rows. The Supporting Information subsection on Example 1 shows how to obtain
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conditional estimates of these quantiles from the regression coefficients, using the T2–
T2 model for illustration. Briefly, the coefficients in the location submodel have a

qualitatively similar interpretation to traditional regression coefficients; for example, a

positive coefficient indicates that higher values of the covariate predict higher values

for the median and, ceteris paribus, for other quantiles. A positive coefficient in the

dispersion submodel implies that higher values of the covariate predict greater spread

among the quantiles.

Turning now to themodels, the beta and Kumaraswamymodels both indicate that the
median is higher for the ‘likely’ than for the ‘unlikely’ sentences, while the logit-logistic

model suggests that they may not differ (the location submodel coefficient is not

significant). However, as suggested by the T2–T2 results in Table 3, several other cdf-

quantile distribution models with good fits in Table 4 have significant negative

coefficients in the location submodel, indicating that themedian for the ‘likely’ sentences

is lower, which agrees with the empirical quantiles themselves. Moreover, the T2–T2 and
similar models’ estimates agree closely with the empirical medians. We note, however,

that the interquartile range is greater in the ‘unlikely’ data and in the distribution models
(as indicated by the negative coefficients in the dispersion submodel), which agrees with

the Smithson et al. finding that the variability of responses is greater for negative

probability phrases.

Whenwe include other examples of distributions that fit the data better than the beta,

Kumaraswamy, and logit-logisticmodels, and compare themwith the empirical quantiles,

their strong log-likelihood values in Table 3 suggest that the T2–T2 result is not a fluke.

Moreover, referring back to the question of how to select distributions to fit data, it should

be clear from the histograms in Figure 5 and the tail behaviours distinguishing the four
subfamilies that the BM distributions would not be good candidates for these data,

because their densities have limits of 0 at bothboundaries of the unit interval. This is borne

out when we fit BM distributions. For example, the model log-likelihood for the logit-T2

distribution is only 7.5 and for the Burr VIII-Cauchy it is much worse, at �1347.4,

Table 4. Parameter estimates, quantiles, and negative log-likelihoods for various distributions

Distribution Item Q.25 Q.5 Q.75

Empirical quantiles Likely 0.590 0.699 0.789

Unlikely 0.470 0.749 0.829

Beta Likely 0.432 0.736 0.928

Unlikely 0.313 0.726 0.956

Kumaraswamy Likely 0.743 0.811 0.865

Unlikely 0.436 0.658 0.839

Logit-logistic Likely 0.557 0.696 0.806

Unlikely 0.509 0.710 0.853

T2–T2 Likely 0.584 0.699 0.785

Unlikely 0.581 0.746 0.847

Arcsinh-Cauchy Likely 0.568 0.691 0.773

Unlikely 0.590 0.754 0.835

T2–Burr VII Likely 0.593 0.700 0.788

Unlikely 0.601 0.747 0.853

T2–Burr VIII Likely 0.591 0.700 0.787

Unlikely 0.596 0.747 0.85

Burr VIII-Burr VII Likely 0.569 0.697 0.801

Unlikely 0.542 0.726 0.855

CDF-quantile distributions 23



compared with log-likelihoods of 265 to 435.3 for the eight distributions in Table 3. For

the same reason, from thepublisheddistributions the simplex alsowould be apoor choice

for these data. Indeed, according to the simplexreg Rpackage (Zhang,Qiu&Shi, 2016), its

model log-likelihood is �1,755.

6. Conclusion and prospects

We have introduced a family of two-parameter distributions that have several useful

properties, as outlined in the Introduction, and provided demonstrations of their

applicability to psychology and their utility in modelling real data. The variety of shapes

that they canmodelmakes thema viable alternative to other parametric alternative such as

mixtures of betas, both because they use fewer parameters than mixture models and

because they have a probability-reweighting interpretation that mixture models do not.

The advantages that this family offers over other two-parameter alternatives stem
primarily from two of its characteristics. First, many of its members are tractable, with

both explicit cdfs and quantile functions. Second, unlike other distributions with explicit

cdfs and quantile functions such as the Kumaraswamy or those featured in Kotz and Van

Dorp (2004), but in common with the beta, its members’ parameters explicitly model

location and dispersion separately. It thus combines several of the best properties of

distributions for modelling random variates on the (0,1) interval, while substantially

augmenting the set of such distributions.

Several relevant topics have not been fully addressed in this paper, but remain to be
explored and developed in future researchon these distributions. This concluding section

briefly surveys these topics and their prospects.

As we have mentioned earlier, further investigations into model diagnostics and

residuals are underway forGLMs using these distributions. Residuals and diagnostics have

been problematic in beta regression, and several papers attempting to deal with these

problems have appeared since 2004 (e.g., Espinheira, Ferrari & Cribari-Neto, 2008;

Ferrari, Espinheira &Cribari-Neto, 2011). A source of difficulties is dealingwith cases near

the boundaries of the support, and therefore we anticipate at least some of these issues
may arise for this distribution family.

In the same vein, we have omitted to present any conclusive material on estimating

random-effects models, but anticipate producing a treatment of the topic to parallel the

Verkuilen and Smithson (2012) paper. Likewise, we have not dealt with alternative

estimation approaches to MLE. Our package does enable users to fit models via Bayesian

Markov chain Monte Carlo, but we have not implemented other alternatives such as

weighted least squares. We refer interested readers to Lemonte and Baz�an (2016)’s

comparisons of MLE and weighted least squares.
Several generalizations and extensions of the cdf-quantile family remain to be

explored. Extensions within the two-parameter family include using non-identical

domains for the parent functions, replacing the argument x in G(x,l,r) with another cdf

or appropriate S(x), and adding parameters to the parent distribution cdfs.

We limit discussion here to the question of adding a third parameter. The rationale

behind adding a parameter is to expand the variety of shapes that can bemodelled (e.g., a

distribution whose median is 1/2 but whose pdf is asymmetric). There are at least four

straightforward ways of generalizing the cdf-quantile family by adding a parameter.
First, raising any cdf or quantile function in the family to a positive exponent yields

tractable and invertible three-parameter cdfs. However, this sacrifices some of the other
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attractive properties of their two-parameter counterparts (e.g., modelling the median in

one parameter).

Second, because we have used distributions with fixed parameters for F and H,

thereby restricting this family to two parameters (l,r), a simple generalization is to add
parameters that augment the cdfs whose standardized versions we have used here. This

generalization is effective for the Burr (1942) distributions of Types II (logistic), VII,

and VIII, whose support is (�∞,∞), because all of them are invertible and therefore

have explicit expressions for their quantiles. Lemonte and Baz�an (2016) treatment does

this for F but not H, and they do not systematically investigate how best to add such

parameters.

Third, our treatment, asmentioned before, is a special case of the Aljarrah et al. (2014)

familywith S(x) restricted to the uniform cdf. A simple generalizationwould be to employ
a power-function distribution, with SðxÞ ¼ xc, for c>0, or any other monotonic [0,1]?
[0,1] function.

Fourth, in some cases one may apply an appropriate one-parameter transformation

such as the Libby and Novick (1982) three-parameter generalized beta distribution. For

instance, the arcsinh-logistic distribution is generalizable in this way, and can yield a

distribution whose median is 1/2 but whose pdf is asymmetric.

There is a natural extension of the GLM for the cdf-quantile family to handle random

effects, following the approach in Verkuilen and Smithson (2012). When the support is
[�∞,∞], we may add random error terms onto appropriate coefficients in the submodel

of l. When the support is [0,∞], the submodel of l is linear in the log-scale, so the error

termswould be addedonto the log-scale submodel. In principlewemay do the same in the

log-scale submodel ofr. An elaboration of thesemodels is beyond the scope of this paper,

but we provide one illustration in the Supporting Information by applying this extension

to the location submodel in equation (5.1). It also has not escaped our notice that the cdf-

quantile family is immediately extensible to multivariate distribution models via copulas,

because of its explict cdf and quantile functions.
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